GOALI: Ultra-Low Wear Plasma Enhanced Atomic Layer Deposited Nitride Thin Films: Exploring Processing, Structure, Properties and Mechanisms
GOALI:超低磨损等离子体增强原子层沉积氮化物薄膜:探索加工、结构、性能和机制
基本信息
- 批准号:1826251
- 负责人:
- 金额:$ 51.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Friction and wear of materials accounts for enormous losses in performance and lifetime of materials, devices and structures, at considerable cost to the US manufacturing, energy, and infrastructure sectors. Approaches to mitigate friction and wear are thus beneficial to the US economy. This Grant Opportunities for Academic Liaison with Industry (GOALI) award supports scientific research to understand mechanisms of friction and wear in metal nitride coatings. Preliminary studies revealed metal nitride coatings are among the most wear-resistant materials ever discovered, showing promise for significantly reducing the financial and environmental impacts of wear. In this research project, thin layers of metal nitride compounds are synthesized and their friction and wear properties are investigated. The aim of this work is to identify the relationships between how the films were created (processing) and their wear behavior (properties). Understanding these relationships allows for enhanced control of the mechanical behavior, and can lead to high-performance wear-resistant materials for coatings. The new materials developed are of broad importance for increasing efficiency and lifetime of mechanical systems, on both large and small scales. The work is performed in collaboration with an industrial partner, Veeco CNT. The industry team is integrally involved in the studies, which provides both educational opportunities for students involved in the research and a path to commercialization for high-performance wear-resistant coating materials. This research examines the fundamental relationships among processing, microstructure, and mechanical behavior in a class of transition metal nitrides deposited using plasma-enhanced atomic layer deposition. The high degree of synthetic tunability in this deposition technique allows for tailoring of the film composition and microstructure. Specifically, the fundamental role of composition on wear mechanism is investigated to determine the role of solid solution strengthening versus the formation of a lubricious wear-generated film in films with both vanadium and titanium cations. The impact of crystallite size on mechanical properties is determined for crystallite sizes in the 1-30 nm range using four independent synthesis parameters that control crystallite size. Adhesion and interface chemistry between the nitride films is investigated and related to macroscopic mechanical behavior, such as delamination, that is relevant to applications. Taken together, these studies reveal fundamental wear mechanisms of this highly promising material that can be related directly to the synthesis and processing parameters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
材料的摩擦和磨损导致材料、设备和结构的性能和寿命的巨大损失,给美国制造业、能源和基础设施部门带来相当大的成本。因此,减少摩擦和磨损的方法对美国经济有利。该奖项旨在支持科学研究,以了解金属氮化物涂层中的摩擦和磨损机制。初步研究表明,金属氮化物涂层是迄今为止发现的最耐磨的材料之一,有望显着减少磨损对经济和环境的影响。在本研究计画中,合成了金属氮化物薄层,并研究其摩擦磨损特性。 这项工作的目的是确定如何创建(处理)和他们的磨损行为(属性)之间的关系。 了解这些关系可以增强对机械行为的控制,并可以导致高性能的涂层耐磨材料。 开发的新材料对于提高大型和小型机械系统的效率和寿命具有广泛的重要性。 这项工作是与工业合作伙伴Veeco CNT合作进行的。该行业团队整体参与了研究,为参与研究的学生提供了教育机会,并为高性能耐磨涂层材料的商业化提供了途径。本研究探讨了使用等离子体增强原子层沉积法沉积的一类过渡金属氮化物的工艺、微观结构和力学行为之间的基本关系。这种沉积技术中的高度合成可调性允许定制膜组成和微结构。 具体而言,磨损机制的组合物的基本作用进行了研究,以确定固溶体强化与形成的润滑磨损产生的膜中的钒和钛阳离子的膜的作用。对于1-30 nm范围内的微晶尺寸,使用控制微晶尺寸的四个独立合成参数来确定微晶尺寸对机械性能的影响。氮化物膜之间的粘附和界面化学进行了研究,并与宏观力学行为,如分层,这是相关的应用。 总之,这些研究揭示了这种极具前景的材料的基本磨损机制,这些机制与合成和加工参数直接相关。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Plasma-enhanced atomic layer deposition of titanium molybdenum nitride: Influence of RF bias and substrate structure
氮化钼钛的等离子体增强原子层沉积:射频偏压和衬底结构的影响
- DOI:10.1116/6.0001175
- 发表时间:2021
- 期刊:
- 影响因子:2.9
- 作者:Chowdhury, Md. Istiaque;Sowa, Mark;Van Meter, Kylie E.;Babuska, Tomas F.;Grejtak, Tomas;Kozen, Alexander C.;Krick, Brandon A.;Strandwitz, Nicholas C.
- 通讯作者:Strandwitz, Nicholas C.
Plasma enhanced atomic layer deposition of titanium nitride-molybdenum nitride solid solutions
氮化钛-氮化钼固溶体的等离子体增强原子层沉积
- DOI:10.1116/6.0000717
- 发表时间:2021
- 期刊:
- 影响因子:2.9
- 作者:Chowdhury, Md. Istiaque;Sowa, Mark;Kozen, Alexander C.;Krick, Brandon A.;Haik, Jewel;Babuska, Tomas F.;Strandwitz, Nicholas C.
- 通讯作者:Strandwitz, Nicholas C.
Plasma-enhanced atomic layer deposition of vanadium nitride
氮化钒的等离子体增强原子层沉积
- DOI:10.1116/1.5109671
- 发表时间:2019
- 期刊:
- 影响因子:2.9
- 作者:Kozen, Alexander C.;Sowa, Mark J.;Ju, Ling;Strandwitz, Nicholas C.;Zeng, Guosong;Babuska, Tomas F.;Hsain, Zakaria;Krick, Brandon A.
- 通讯作者:Krick, Brandon A.
Quality Control Metrics to Assess MoS2 Sputtered Films for Tribological Applications
- DOI:10.1007/s11249-022-01642-y
- 发表时间:2022-12-01
- 期刊:
- 影响因子:3.2
- 作者:Babuska, Tomas F.;Curry, John F.;Krick, Brandon A.
- 通讯作者:Krick, Brandon A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nick Strandwitz其他文献
Nick Strandwitz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nick Strandwitz', 18)}}的其他基金
CAREER: Probing Crystallization of Atomic Layers Using In Situ Electron Diffraction
职业:利用原位电子衍射探测原子层的结晶
- 批准号:
1752956 - 财政年份:2018
- 资助金额:
$ 51.25万 - 项目类别:
Continuing Grant
Silicon Metal-Insulator-Semiconductor Photovoltaics with Atomic Layer Deposited Interfacial Layers
具有原子层沉积界面层的硅金属-绝缘体-半导体光伏
- 批准号:
1605129 - 财政年份:2016
- 资助金额:
$ 51.25万 - 项目类别:
Standard Grant
Semiconductor Photoanodes for Water Oxidation and Solar Fuels Generation Stabilized Using Atomic Layer Deposition
利用原子层沉积稳定水氧化和太阳能燃料发电的半导体光电阳极
- 批准号:
1042006 - 财政年份:2010
- 资助金额:
$ 51.25万 - 项目类别:
Standard Grant
相似国自然基金
磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
- 批准号:31471690
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
- 批准号:60976066
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 51.25万 - 项目类别:
Standard Grant
Ultra-low noise magnetic environments
超低噪声磁场环境
- 批准号:
ST/Y509978/1 - 财政年份:2024
- 资助金额:
$ 51.25万 - 项目类别:
Research Grant
Ultra Low Phase Noise Analysis & Measurement
超低相位噪声分析
- 批准号:
10089379 - 财政年份:2024
- 资助金额:
$ 51.25万 - 项目类别:
Collaborative R&D
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341237 - 财政年份:2024
- 资助金额:
$ 51.25万 - 项目类别:
Continuing Grant
Implementing VVC codec in WebRTC video conferencing and Ultra Low Latency CDN for reduced network footprint
在 WebRTC 视频会议和超低延迟 CDN 中实施 VVC 编解码器,以减少网络占用
- 批准号:
10114427 - 财政年份:2024
- 资助金额:
$ 51.25万 - 项目类别:
Collaborative R&D
Novel alkaline electrolyser with optimized micro-patterned electrodes for efficient ultra-low cost hydrogen
新型碱性电解槽具有优化的微图案电极,可实现高效、超低成本的氢气
- 批准号:
10075115 - 财政年份:2023
- 资助金额:
$ 51.25万 - 项目类别:
Grant for R&D
Development of an ultra low emission catalytic gasification wood stove
超低排放催化气化柴火炉的研制
- 批准号:
10080888 - 财政年份:2023
- 资助金额:
$ 51.25万 - 项目类别:
Small Business Research Initiative
Study of mitochondrial activation mechanism by ultra-low frequency magnetic field and development of minimally invasive therapy
超低频磁场线粒体激活机制研究及微创治疗进展
- 批准号:
23K06412 - 财政年份:2023
- 资助金额:
$ 51.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Tierras Observatory: An Ultra-precise Time-series Photometer to Characterize Nearby Low-mass Stars and Their Terrestrial Exoplanets
Tierras 天文台:超精确时间序列光度计,用于表征附近的低质量恒星及其类地系外行星
- 批准号:
2308043 - 财政年份:2023
- 资助金额:
$ 51.25万 - 项目类别:
Standard Grant
FuSe: Ultra-Low-Energy Logic-in-Memory Computing using Multiferroic Spintronics
FuSe:使用多铁自旋电子学的超低能耗内存逻辑计算
- 批准号:
2329111 - 财政年份:2023
- 资助金额:
$ 51.25万 - 项目类别:
Continuing Grant