Battery Cathodes with Optimized Interfacial Stability Through the Tailored Design of Core-Shell Architectures
通过核壳结构的定制设计优化界面稳定性的电池正极
基本信息
- 批准号:1605126
- 负责人:
- 金额:$ 30.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rechargeable lithium ion batteries help to enable sustainable energy systems by storing electricity generated by intermittent renewable resources such as wind and solar energy, or by powering zero-emission electric vehicles charged by electricity from renewable resources. However, the performance of lithium ion batteries degrades over repeated recharging cycles because of unwanted reactions that occur at the boundary between the battery electrode and the electrolyte. This project will develop new electrode materials for preventing these unwanted reactions. The key innovation is to coat nanoscale crystals of the lithium-based energy storage material with a very thin layer of other materials that are tailored to block these undesired reactions but maintain performance. The coating is uniformly applied to all the nanocrystals, and so that when the crystals are formed into an electrode, there are no gaps in the coating. The educational activities associated with this project involve mentoring of undergraduate students for summer research, and outreach to high school students in the Chicago area. The goals of the outreach activities are to communicate the value of energy storage technology in modern society to diverse groups of high school students in the Chicago area, and to encourage these students to pursue education and careers in STEM fields. This overall goal of this research is to improve the ability of lithium ion battery cathodes to withstand extreme cycling environments by maximizing interfacial stability without sacrificing energy storage capacity, power delivery, and recharging time. Cathode-electrolyte instabilities have been linked to the presence of electroactive transition metals at the surface of the electrode. These instabilities result in irreversible transformations at these interfaces, with formation of insulating layers that impede transport as well as material loss due to corrosion. Core-shell architectures can address interfacial instability. The shell will be rich in inactive aluminum ions that minimize irreversible transformations at the interface, and the core will be composed of active transition metal oxides (Mn, Ni, Co) with high charge storage capacity. Furthermore, the shell will be thin to reduce storage capacity loss, and conformal to passivate all interfaces. To gain a fundamental understanding of the ability these core-shell cathode materials to maintain electrode stability, the research plan has three objectives. The first objective is to fabricate core-epitaxial shell nanocrystals for high voltage, high energy battery cathodes. The second objective is to design and evaluate core-shell architectures at the secondary particle level, and the third objective is to construct of full lithium ion cells and characterize of their interfacial mechanisms of operation. As part of this research, synthesis and fabrication tools will be developed to effectively coat all interfaces with tailored materials and create integrated cathode architectures where appropriate levels of electron and ion transport are imparted.
可充电锂离子电池通过存储风能和太阳能等间歇性可再生资源产生的电力,或为零排放电动汽车提供动力,从而帮助实现可持续能源系统。 然而,由于在电池电极和电解质之间的边界处发生的不希望的反应,锂离子电池的性能在重复的再充电循环中降低。该项目将开发新的电极材料,以防止这些不必要的反应。 关键的创新是在锂基储能材料的纳米级晶体上涂上一层非常薄的其他材料,这些材料可以阻止这些不期望的反应,但保持性能。 涂层均匀地施加到所有纳米晶体上,并且使得当晶体形成电极时,涂层中没有间隙。 与该项目相关的教育活动包括指导本科生进行夏季研究,并向芝加哥地区的高中生推广。 外展活动的目标是向芝加哥地区的不同高中生群体传达储能技术在现代社会中的价值,并鼓励这些学生在STEM领域接受教育和从事职业。 本研究的总体目标是通过最大限度地提高界面稳定性,在不牺牲能量存储容量、功率传输和充电时间的情况下,提高锂离子电池阴极承受极端循环环境的能力。 阴极电解质不稳定性与电极表面存在电活性过渡金属有关。 这些不稳定性导致这些界面处的不可逆转变,形成绝缘层,其阻碍运输以及由于腐蚀引起的材料损失。核-壳结构可以解决界面不稳定性。 壳将富含使界面处的不可逆转变最小化的非活性铝离子,并且核将由具有高电荷存储容量的活性过渡金属氧化物(Mn、Ni、Co)组成。此外,壳体将是薄的以减少存储容量损失,并且保形以钝化所有界面。 为了从根本上了解这些核壳阴极材料保持电极稳定性的能力,研究计划有三个目标。第一个目标是制造用于高电压、高能量电池阴极的核-外延壳纳米晶体。 第二个目标是在二次粒子水平上设计和评估核-壳结构,第三个目标是构建完整的锂离子电池并表征其界面操作机制。 作为这项研究的一部分,将开发合成和制造工具,以有效地涂覆定制材料的所有界面,并创建集成的阴极架构,其中赋予适当的电子和离子传输水平。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jordi Cabana其他文献
Ex situ NMR and neutron diffraction study of structure and lithium motion in Li<sub>7</sub>MnN<sub>4</sub>
- DOI:
10.1016/j.ssi.2005.07.001 - 发表时间:
2005-09-01 - 期刊:
- 影响因子:
- 作者:
Jordi Cabana;Nicolas Dupré;Gwenaëlle Rousse;Clare P. Grey;M. Rosa Palacín - 通讯作者:
M. Rosa Palacín
Designing Novel Tunable Mn-Based Inorganic Oxyfluoride Pigments
设计新型可调锰基无机氟氧化物颜料
- DOI:
10.1016/j.materresbull.2024.112746 - 发表时间:
2024 - 期刊:
- 影响因子:5.4
- 作者:
Brianna Lehr;George Zurowski;Justin Chhoeun;Khagesh Kumar;Gene M. Nolis;Jordan Shanahan;Kathryn Kilpatrick;Katie Rojas;Jordi Cabana;Daniel Kissel;Maxim Avdeev;Eirin Sullivan - 通讯作者:
Eirin Sullivan
Interlayer expansion of kinetically grown molybdenum oxide for Mg batteries with enhanced energy density
用于镁电池的动力学生长的氧化钼的层间膨胀以提高能量密度
- DOI:
10.1016/j.ensm.2025.104002 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:20.200
- 作者:
Sri Charan Reddy;Hosik Lee;Neelam Sunariwal;Khagesh Kumar;Woo Joo No;Jordi Cabana;Si Hyoung Oh;Hyun Deog Yoo - 通讯作者:
Hyun Deog Yoo
Titanate Anodes for Sodium Ion Batteries
- DOI:
10.1007/s10904-013-9977-8 - 发表时间:
2013-09-27 - 期刊:
- 影响因子:4.900
- 作者:
Marca M. Doeff;Jordi Cabana;Mona Shirpour - 通讯作者:
Mona Shirpour
Batteries: Fundamentals and materials aspects
电池:基础知识和材料方面
- DOI:
10.4032/9789814411820 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
M. Casas‐Cabanas;Jordi Cabana - 通讯作者:
Jordi Cabana
Jordi Cabana的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jordi Cabana', 18)}}的其他基金
EAGER: SUPER: Carbon-based Superconductors Stable at Ambient Temperature and Pressure
EAGER:SUPER:碳基超导体在环境温度和压力下稳定
- 批准号:
2132698 - 财政年份:2021
- 资助金额:
$ 30.86万 - 项目类别:
Continuing Grant
Chemical Bonding in Redox-Active Oxyfluorides
氧化还原活性氟氧化物中的化学键
- 批准号:
2118020 - 财政年份:2021
- 资助金额:
$ 30.86万 - 项目类别:
Standard Grant
Defining Critical Heterogeneity in Cathode Architectures for Li-ion Batteries with High Energy Density
定义高能量密度锂离子电池阴极结构的关键异质性
- 批准号:
2022723 - 财政年份:2020
- 资助金额:
$ 30.86万 - 项目类别:
Standard Grant
Chemical and electronic states in chalcogenide-based electrocatalytic systems during CO2 reduction
CO2 还原过程中基于硫族化物的电催化系统的化学和电子态
- 批准号:
1800357 - 财政年份:2018
- 资助金额:
$ 30.86万 - 项目类别:
Standard Grant
Elucidation of ligand-centered electrochemical reactivity in complex transition metal oxides
复杂过渡金属氧化物中以配体为中心的电化学反应性的阐明
- 批准号:
1809372 - 财政年份:2018
- 资助金额:
$ 30.86万 - 项目类别:
Standard Grant
Next Generation Electrochemistry (NGenE): A Summer Research Institute
下一代电化学(NGenE):夏季研究所
- 批准号:
1661629 - 财政年份:2017
- 资助金额:
$ 30.86万 - 项目类别:
Standard Grant
Next Generation Electrochemistry (NGenE) Summer Institute, Chicago
下一代电化学 (NGenE) 夏季学院,芝加哥
- 批准号:
1645427 - 财政年份:2016
- 资助金额:
$ 30.86万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342025 - 财政年份:2024
- 资助金额:
$ 30.86万 - 项目类别:
Standard Grant
Metal Fluoride Open Frameworks for Next-generation K-ion Battery Cathodes
用于下一代钾离子电池阴极的金属氟化物开放框架
- 批准号:
EP/X041565/1 - 财政年份:2024
- 资助金额:
$ 30.86万 - 项目类别:
Research Grant
CAREER: Computational Design of High-Performing V2O5 Cathodes for Zn-ion batteries
职业:锌离子电池高性能 V2O5 阴极的计算设计
- 批准号:
2339751 - 财政年份:2024
- 资助金额:
$ 30.86万 - 项目类别:
Continuing Grant
CAREER: Structural Implications of Anion Redox in Li-Rich Sulfide Cathodes for Li-ion Batteries
职业:锂离子电池富锂硫化物阴极中阴离子氧化还原的结构影响
- 批准号:
2340864 - 财政年份:2024
- 资助金额:
$ 30.86万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342024 - 财政年份:2024
- 资助金额:
$ 30.86万 - 项目类别:
Standard Grant
Enabling High-performance Layered Oxide Sodium-Ion Battery Cathodes
实现高性能层状氧化物钠离子电池正极
- 批准号:
DP230100198 - 财政年份:2023
- 资助金额:
$ 30.86万 - 项目类别:
Discovery Projects
PFI-TT: Device to Recycle Scrap Cathodes in Lithium-Ion Battery Factories
PFI-TT:锂离子电池工厂废旧正极回收装置
- 批准号:
2314242 - 财政年份:2023
- 资助金额:
$ 30.86万 - 项目类别:
Standard Grant
CAREER: Identifying and Controlling Interfacial and Structural Instabilities in Transition Metal Oxide Cathodes for Na-ion Batteries
职业:识别和控制钠离子电池过渡金属氧化物阴极的界面和结构不稳定性
- 批准号:
2402216 - 财政年份:2023
- 资助金额:
$ 30.86万 - 项目类别:
Continuing Grant
Enabling Sulfur-Based Beyond-Lithium Metal Batteries via a Mechanistic Understanding of Advanced Hybrid Cathodes and Borate Electrolytes
通过对先进混合阴极和硼酸盐电解质的机理理解,实现硫基超锂金属电池
- 批准号:
2323065 - 财政年份:2023
- 资助金额:
$ 30.86万 - 项目类别:
Standard Grant
Electrodeposited Cathodes with Tunable Stoichiometry for Alkaline Batteries
用于碱性电池的化学计量可调的电沉积阴极
- 批准号:
LP220200583 - 财政年份:2023
- 资助金额:
$ 30.86万 - 项目类别:
Linkage Projects














{{item.name}}会员




