Defining Critical Heterogeneity in Cathode Architectures for Li-ion Batteries with High Energy Density
定义高能量密度锂离子电池阴极结构的关键异质性
基本信息
- 批准号:2022723
- 负责人:
- 金额:$ 33.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Lithium-ion batteries are the premier choice for clean and efficient energy storage for portable devices and electric vehicles. However, their performance still falls short of the metrics required to drive a meaningful shift away from transportation based on fossil fuels. Specifically, the energy stored per unit of volume, or energy density, is too low. Challenges in increasing energy density stem from the concurrent increase in the rate of failure and loss of power. This trade-off is driven by limitations at the cathode, but its microscopic chemical structure and mechanisms must be precisely defined for effective solutions to arise. Through a suite of existing and emerging techniques based on X-ray mapping, researchers at the University of Illinois at Chicago seek to reveal how chemical variations, called heterogeneity, at the nano and microscale determine the ability of modern lithium-ion cathodes to achieve long lifetimes in batteries with high energy density. This research will advance electrochemical engineering and battery manufacturing by establishing novel engineering principles informed by spatially precise chemical knowledge, which will subsequently guide new breakthroughs. To maximize and expedite impact in current technology, this research focuses on fundamental questions, yet applied to cathode materials of interest to industry. The activities are intertwined with the training of future generations of scientists through internships for undergraduate and high school students, promotion of science in local elementary schools and a Summer workshop on electrochemistry. These activities will have a special focus on members of Chicago's Hispanic communities, which are traditionally underrepresented in STEM.Limitations in the energy density of Li-ion batteries stem from the cathode, mainly because layered oxides, the leading family of candidates, do not currently perform at their theoretical limit. This limitation is fundamentally underpinned by the underlying electrochemical reactions that generate flow of electrical charge, which are hindered by incomplete reversibility and competing processes that degrade activity. The objective of this research is to correlate macroscopic battery performance to local chemical composition and progress of the storage reactions in the complex architectures pursued today. Conventionally, these correlations are established at the ensemble averages of the bulk electrode and at the level of very few isolated particles. But these scales are mismatched to the current push to design multifunctional heterostructures to enhance cathode performance, where it is critical to ascertain the nanoscale distribution of different elements and its consistency both within and between many particles. They are also mismatched to pinpoint the microscopic origin of the failure of competitive cathodes at extreme rates and extensive cycling, which critically depends on the specific microscale activity relative to the complete architecture. This research will quantify critical heterogeneity at relevant length scales with a suite of techniques of X-ray imaging and mapping, including in 3D and during battery operation. Novel analytical methods of broad applicability in battery research will be part of the legacy of this project. The novel insight will provide actionable engineering inputs to overcome enduring cathode roadblocks toward transformational energy density in next-generation Li-ion batteries.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
锂离子电池是便携式设备和电动汽车清洁高效储能的首选。然而,它们的表现仍然福尔斯达不到推动从基于化石燃料的交通运输进行有意义的转变所需的指标。具体地说,每单位体积储存的能量或能量密度太低。提高能量密度的挑战来自于故障率和功率损失率的同时增加。这种权衡是由阴极的限制所驱动的,但其微观化学结构和机制必须精确定义才能产生有效的解决方案。通过一套基于X射线成像的现有和新兴技术,伊利诺伊大学芝加哥分校的研究人员试图揭示纳米和微米尺度的化学变化(称为异质性)如何决定现代锂离子阴极在高能量密度电池中实现长寿命的能力。这项研究将通过建立由空间精确的化学知识提供信息的新工程原理来推进电化学工程和电池制造,随后将指导新的突破。为了最大限度地提高和加快当前技术的影响,这项研究侧重于基本问题,但适用于工业感兴趣的阴极材料。这些活动与通过本科生和高中生实习培训未来几代科学家、在当地小学促进科学和电化学夏季讲习班交织在一起。这些活动将特别关注芝加哥的西班牙裔社区的成员,这些社区在STEM中传统上代表性不足。锂离子电池能量密度的限制来自阴极,主要是因为层状氧化物,候选人的主要家族,目前没有达到理论极限。这种限制从根本上得到了产生电荷流动的潜在电化学反应的支持,而电荷流动受到不完全可逆性和降低活性的竞争过程的阻碍。这项研究的目的是将宏观电池性能与当今追求的复杂架构中的局部化学成分和存储反应的进展相关联。传统上,这些相关性建立在整体平均的散装电极和在非常少的孤立粒子的水平。但这些尺度与当前设计多功能异质结构以增强阴极性能的推动力不匹配,其中确定不同元素的纳米级分布及其在许多颗粒内和颗粒之间的一致性至关重要。它们也不匹配,以查明竞争性阴极在极端速率和广泛循环下失败的微观起源,这严重依赖于相对于完整架构的特定微观活动。这项研究将量化关键异质性在相关的长度尺度与一套技术的X射线成像和映射,包括在3D和电池运行期间。在电池研究中具有广泛适用性的新型分析方法将成为该项目遗产的一部分。这一新颖的见解将提供可操作的工程投入,以克服下一代锂离子电池能量密度转型的持久阴极障碍。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
3D Quantification of Elemental Gradients within Heterostructured Particles of Battery Cathodes
- DOI:10.1021/acsenergylett.2c02619
- 发表时间:2023-02
- 期刊:
- 影响因子:22
- 作者:E. Allen;Young-Seop Shin;William Judge;M. Wolfman;V. De Andrade;S. Cologna;J. Cabana
- 通讯作者:E. Allen;Young-Seop Shin;William Judge;M. Wolfman;V. De Andrade;S. Cologna;J. Cabana
Spatial Quantification of Microstructural Degradation during Fast Charge in 18650 Lithium-Ion Batteries through Operando X-ray Microtomography and Euclidean Distance Mapping
通过操作 X 射线显微断层扫描和欧几里德距离测绘对 18650 锂离子电池快速充电期间微观结构退化进行空间量化
- DOI:10.1021/acsaem.2c02397
- 发表时间:2022
- 期刊:
- 影响因子:6.4
- 作者:Allen, Eva;Lim, Linda Y.;Xiao, Xianghui;Liu, Albert;Toney, Michael F.;Cabana, Jordi;Nelson Weker, Johanna
- 通讯作者:Nelson Weker, Johanna
sxdm—A python framework for analysis of Scanning X-Ray Diffraction Microscopy data
sxdm——用于分析扫描 X 射线衍射显微镜数据的 Python 框架
- DOI:10.1016/j.simpa.2021.100172
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Judge, William;Plews, Michael;May, Brian;Holt, Martin V.;Cabana, Jordi
- 通讯作者:Cabana, Jordi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jordi Cabana其他文献
Ex situ NMR and neutron diffraction study of structure and lithium motion in Li<sub>7</sub>MnN<sub>4</sub>
- DOI:
10.1016/j.ssi.2005.07.001 - 发表时间:
2005-09-01 - 期刊:
- 影响因子:
- 作者:
Jordi Cabana;Nicolas Dupré;Gwenaëlle Rousse;Clare P. Grey;M. Rosa Palacín - 通讯作者:
M. Rosa Palacín
Designing Novel Tunable Mn-Based Inorganic Oxyfluoride Pigments
设计新型可调锰基无机氟氧化物颜料
- DOI:
10.1016/j.materresbull.2024.112746 - 发表时间:
2024 - 期刊:
- 影响因子:5.4
- 作者:
Brianna Lehr;George Zurowski;Justin Chhoeun;Khagesh Kumar;Gene M. Nolis;Jordan Shanahan;Kathryn Kilpatrick;Katie Rojas;Jordi Cabana;Daniel Kissel;Maxim Avdeev;Eirin Sullivan - 通讯作者:
Eirin Sullivan
Interlayer expansion of kinetically grown molybdenum oxide for Mg batteries with enhanced energy density
用于镁电池的动力学生长的氧化钼的层间膨胀以提高能量密度
- DOI:
10.1016/j.ensm.2025.104002 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:20.200
- 作者:
Sri Charan Reddy;Hosik Lee;Neelam Sunariwal;Khagesh Kumar;Woo Joo No;Jordi Cabana;Si Hyoung Oh;Hyun Deog Yoo - 通讯作者:
Hyun Deog Yoo
Titanate Anodes for Sodium Ion Batteries
- DOI:
10.1007/s10904-013-9977-8 - 发表时间:
2013-09-27 - 期刊:
- 影响因子:4.900
- 作者:
Marca M. Doeff;Jordi Cabana;Mona Shirpour - 通讯作者:
Mona Shirpour
Batteries: Fundamentals and materials aspects
电池:基础知识和材料方面
- DOI:
10.4032/9789814411820 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
M. Casas‐Cabanas;Jordi Cabana - 通讯作者:
Jordi Cabana
Jordi Cabana的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jordi Cabana', 18)}}的其他基金
EAGER: SUPER: Carbon-based Superconductors Stable at Ambient Temperature and Pressure
EAGER:SUPER:碳基超导体在环境温度和压力下稳定
- 批准号:
2132698 - 财政年份:2021
- 资助金额:
$ 33.06万 - 项目类别:
Continuing Grant
Chemical Bonding in Redox-Active Oxyfluorides
氧化还原活性氟氧化物中的化学键
- 批准号:
2118020 - 财政年份:2021
- 资助金额:
$ 33.06万 - 项目类别:
Standard Grant
Chemical and electronic states in chalcogenide-based electrocatalytic systems during CO2 reduction
CO2 还原过程中基于硫族化物的电催化系统的化学和电子态
- 批准号:
1800357 - 财政年份:2018
- 资助金额:
$ 33.06万 - 项目类别:
Standard Grant
Elucidation of ligand-centered electrochemical reactivity in complex transition metal oxides
复杂过渡金属氧化物中以配体为中心的电化学反应性的阐明
- 批准号:
1809372 - 财政年份:2018
- 资助金额:
$ 33.06万 - 项目类别:
Standard Grant
Next Generation Electrochemistry (NGenE): A Summer Research Institute
下一代电化学(NGenE):夏季研究所
- 批准号:
1661629 - 财政年份:2017
- 资助金额:
$ 33.06万 - 项目类别:
Standard Grant
Next Generation Electrochemistry (NGenE) Summer Institute, Chicago
下一代电化学 (NGenE) 夏季学院,芝加哥
- 批准号:
1645427 - 财政年份:2016
- 资助金额:
$ 33.06万 - 项目类别:
Standard Grant
Battery Cathodes with Optimized Interfacial Stability Through the Tailored Design of Core-Shell Architectures
通过核壳结构的定制设计优化界面稳定性的电池正极
- 批准号:
1605126 - 财政年份:2016
- 资助金额:
$ 33.06万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
- 批准号:
2340171 - 财政年份:2024
- 资助金额:
$ 33.06万 - 项目类别:
Continuing Grant
Exploring volcanic arcs as factories of critical minerals
探索火山弧作为关键矿物工厂
- 批准号:
FT230100230 - 财政年份:2024
- 资助金额:
$ 33.06万 - 项目类别:
ARC Future Fellowships
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
- 批准号:
EP/Y033183/1 - 财政年份:2024
- 资助金额:
$ 33.06万 - 项目类别:
Research Grant
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 33.06万 - 项目类别:
Collaborative R&D
Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
- 批准号:
EP/Y022092/1 - 财政年份:2024
- 资助金额:
$ 33.06万 - 项目类别:
Research Grant
Crossing the Finish Line: Intervening in a Critical Period for Educational Investment
冲过终点线:介入教育投资关键期
- 批准号:
2343873 - 财政年份:2024
- 资助金额:
$ 33.06万 - 项目类别:
Standard Grant
PFI-TT: Vine Robots for In-Pipe Navigation and Inspection of Critical Infrastructure
PFI-TT:用于管道内导航和关键基础设施检查的 Vine 机器人
- 批准号:
2345769 - 财政年份:2024
- 资助金额:
$ 33.06万 - 项目类别:
Standard Grant
GEO-CM: Biogeochemical Processes Affecting Critical Mineral Hosts in Mine Tailings and Weathered Ore Zones
GEO-CM:影响尾矿和风化矿带中关键矿物的生物地球化学过程
- 批准号:
2327617 - 财政年份:2024
- 资助金额:
$ 33.06万 - 项目类别:
Standard Grant
Unraveling critical neutrino interaction uncertainties with the upgraded T2K experiment
通过升级的 T2K 实验揭示关键的中微子相互作用的不确定性
- 批准号:
24K17065 - 财政年份:2024
- 资助金额:
$ 33.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A computational weight of evidence platform to understand critical fish specific biology mediating toxicologically relevant responses to stress
证据平台的计算权重,用于了解介导毒理学相关应激反应的关键鱼类特定生物学
- 批准号:
BB/Y512564/1 - 财政年份:2024
- 资助金额:
$ 33.06万 - 项目类别:
Training Grant