Beyond incompressible phenomenology: mixing in compressible turbulent flows
超越不可压缩现象学:可压缩湍流中的混合
基本信息
- 批准号:1605914
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Donzis, DiegoProposal Number: 1605914Mixing of substances or species (commonly called "scalars" in the literature) in turbulent flows is a topic of paramount importance from both fundamental and practical standpoints. The focus of this proposal is on the investigation of compressible turbulent flows and mixing. In order to achieve this goal, it is proposed to use simulations of unprecedented high fidelity, pushing the boundaries of the class of simulations known as Direct Numerical Simulations (DNS). While substantial work has been accumulated over decades on mixing in incompressible flows, there is no similar level of exploration or data on mixing in compressible turbulence in spite of its critical importance in diverse areas such as air transportation and aerodynamics, physics of solar wind, flows in stars and supernovae, chemically reacting flows in engines or the atmosphere, among many others. In applications, compressible mixing is commonly modeled using incompressible results based mainly on classical phenomenology. There is, thus, a gap in knowledge which this proposal aims to close by providing groundwork for understanding the fundamental physical processes through controlled and systematic studies in new canonical configurations and the resulting databases of high-fidelity DNS data for the community to explore. The proposed research will comprehensively investigate the effects of Reynolds number, Mach number and Schmidt number. The work proposed includes the definition of a class of canonical flows that can be used to obtain high fidelity results that could lead to advances in compressible scalar mixing. Results for these canonical flows would provide reliable data that can be used as benchmark for theories and models. Furthermore, it is proposed to develop a so-called Langley curve for compressible mixing. The high performance computing techniques to be developed as the side effect of this project and the data will be available to the community of interested scientists and engineers.
PI:Donzis,DiegoProposal Number:1605914湍流中物质或物种(文献中通常称为“标量”)的混合从基本和实际角度来看都是一个极其重要的话题。这项建议的重点是研究可压缩湍流和混合。为了实现这一目标,建议使用前所未有的高保真模拟,突破被称为直接数值模拟(DNS)的模拟类别的界限。虽然几十年来关于不可压缩流动中的混合已经积累了大量的工作,但关于可压缩湍流中的混合还没有类似水平的探索或数据,尽管它在诸如航空运输和空气动力学、太阳风的物理、恒星和超新星中的流动、发动机或大气中的化学反应流动等许多领域都具有至关重要的重要性。在应用中,可压缩混合通常使用主要基于经典现象学的不可压缩结果来建模。因此,这项提案旨在通过在新的规范配置中进行受控和系统的研究,以及由此产生的供社区探索的高保真域名数据数据库,为了解基本的物理过程提供基础,从而弥合这一知识差距。建议的研究将全面考察雷诺数、马赫数和施密特数的影响。所提出的工作包括定义一类可用于获得高保真结果的正则流,该结果可能导致可压缩标量混合的进步。这些典型流动的结果将提供可靠的数据,可用作理论和模型的基准。此外,还提出了一种可压缩混合的所谓朗利曲线。作为该项目的副作用而开发的高性能计算技术和数据将向感兴趣的科学家和工程师社区提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Diego Donzis其他文献
Diego Donzis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Diego Donzis', 18)}}的其他基金
Selected-Eddy Simulations (SES): a revolutionary approach for turbulence simulations
选定涡模拟 (SES):一种革命性的湍流模拟方法
- 批准号:
2040114 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Frontera Travel Grant: Fundamental Studies of Compressible Turbulence and Turbulent Mixing
Frontera 旅行补助金:可压缩湍流和湍流混合的基础研究
- 批准号:
2031913 - 财政年份:2020
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
XPS: FULL: DSD: Asynchronous PDE Algorithms for Turbulent Flows at Exascale
XPS:完整:DSD:百亿亿级湍流的异步 PDE 算法
- 批准号:
1439145 - 财政年份:2014
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSE: A Petascale Numerical Library for Multiscale Phenomena Simulations
合作研究:SI2-SSE:用于多尺度现象模拟的千万亿级数值库
- 批准号:
1339773 - 财政年份:2013
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
CAREER: Discoveries in compressible turbulence and turbulent mixing through Petascale simulations and analysis
职业:通过千万亿次模拟和分析发现可压缩湍流和湍流混合
- 批准号:
1054966 - 财政年份:2011
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
相似国自然基金
不可压流体力学方程中的一些问题
- 批准号:10771177
- 批准年份:2007
- 资助金额:17.0 万元
- 项目类别:面上项目
相似海外基金
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Structure-Preserving Finite Element Methods for Incompressible Flow on Smooth Domains and Surfaces
光滑域和表面上不可压缩流动的保结构有限元方法
- 批准号:
2309425 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
- 批准号:
2309748 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Anisotropically spatial temporal behavior of incompressible viscous flow around a moving rigid body
运动刚体周围不可压缩粘性流的各向异性时空行为
- 批准号:
23K12999 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
- 批准号:
2309747 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245228 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
CAREER: New Algorithms and Models for Turbulence in Incompressible Fluids
职业:不可压缩流体湍流的新算法和模型
- 批准号:
2143331 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant














{{item.name}}会员




