Stable stems - the computation of stable homotopy groups of spheres
稳定茎 - 球体稳定同伦群的计算
基本信息
- 批准号:1606290
- 负责人:
- 金额:$ 16.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Award: DMS 1606290, Principal Investigator: Daniel C. IsaksenHigh-dimensional spheres are the basic building blocks of all geometric objects. It turns out that spheres of different dimensions can fit together in only certain combinations to create more complicated geometric objects. The computation of stable homotopy groups is essentially the same as counting these combinations. This computation has been a major topic of research since the middle of the 20th century. This work belongs to the field of homotopy theory, which is a technique for studying geometric objects up to certain kinds of deformations. Motivic homotopy theory is a version of homotopy theory that applies to problems in algebraic geometry. This project exploits the similarities and differences between classical homotopy theory and motivic homotopy theory to compute stable homotopy groups.The computation of stable homotopy groups of the sphere spectrum is among the most fundamental problems in homotopy theory. The projects goals are to apply Adams spectral sequences at the prime 2 to compute: (1) classical stable homotopy groups; (2) motivic stable homotopy groups over C; (3) motivic stable homotopy groups over R; and (4) C2-equivariant stable homotopy groups. These four computations are closely interrelated. Their connections reveal structure that is not apparent within just one type of stable homotopy group. At face value, the computation of the C2-equivariant Adams spectral sequence presents unmanageable technical complexities. There is a path to C2-equivariant computations that proceeds through intermediate stages of C-motivic and R-motivic calculations. At each stage, new complexities arise, but they are manageable when taken one at a time. The first step is to compute algebraic Ext groups that serve as the E2-page of the Adams spectral sequence. These Ext groups are in themselves quite complicated, and typically are obtained with an auxiliary spectral sequence. Since this part of the problem is entirely algebraic, computers can be used to great effect here. The second step is to compute Adams differentials and hidden extensions. This process usually requires subtle work with Toda brackets and is no longer algebraic. Several techniques will be employed: (a) brute force computation in a range of dimensions; (b) machine-assisted computation to produce algebraic data and to organize the many individual computational facts into a consistent whole; (c) description of the global structure of stable homotopy groups by means of periodicity operators; and (d) comparison between the Adams-Novikov and Adams spectral sequences.
奖项:DMS 1606290,主要研究者:丹尼尔C. Isaksen高维球体是所有几何对象的基本构建块。 事实证明,不同尺寸的球体只能以特定的组合方式组合在一起,以创造更复杂的几何物体。 稳定同伦群的计算本质上与计算这些组合相同。 自世纪中期以来,这种计算一直是一个主要的研究课题。 这项工作属于同伦理论领域,这是一种研究几何物体变形的技术。 动机同伦理论是同伦理论的一个版本,适用于代数几何问题。 本项目利用经典同伦理论和运动同伦理论的异同来计算稳定同伦群,球谱的稳定同伦群的计算是同伦理论中最基本的问题之一。 该项目的目标是应用素数为2的亚当斯谱序列计算:(1)经典稳定同伦群;(2)C上的动机稳定同伦群;(3)R上的动机稳定同伦群;(4)C2-等变稳定同伦群。 这四种计算密切相关。 它们之间的联系揭示了一种结构,这种结构在一种稳定的同伦群中是不明显的。 从表面上看,C2-等变亚当斯谱序列的计算呈现出难以管理的技术复杂性。 有一条通往C2-等变计算的路径,它通过C-动机和R-动机计算的中间阶段进行。 在每个阶段,都会出现新的复杂性,但如果一次只考虑一个,它们是可以管理的。第一步是计算作为亚当斯谱序列的E2-页的代数Ext群。 这些Ext群本身是相当复杂的,并且通常是用辅助谱序列获得的。 由于这部分问题完全是代数问题,计算机在这里可以发挥很大的作用。 第二步是计算亚当斯微分和隐扩张。这个过程通常需要对户田括号进行精细的处理,并且不再是代数的。 将采用几种技术:(a)在一系列维度中进行蛮力计算;(B)机器辅助计算,以产生代数数据并将许多单独的计算事实组织成一个一致的整体;(c)通过周期性算子描述稳定同伦群的全局结构;(d)比较亚当斯-诺维科夫和亚当斯谱序列。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Isaksen其他文献
Classical and Motivic Adams Charts
- DOI:
- 发表时间:
2014-01 - 期刊:
- 影响因子:0
- 作者:
Daniel Isaksen - 通讯作者:
Daniel Isaksen
Etale homotopy and sums-of-squares formulas
Etale 同伦和平方和公式
- DOI:
10.1017/s0305004108001205 - 发表时间:
2006 - 期刊:
- 影响因子:0.8
- 作者:
Daniel Dugger;Daniel Isaksen - 通讯作者:
Daniel Isaksen
The cohomology of motivic A(2)
动机 A(2) 的上同调
- DOI:
10.4310/hha.2009.v11.n2.a13 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Daniel Isaksen - 通讯作者:
Daniel Isaksen
Calculating limits and colimits in pro-categories
计算专业类别中的极限和余极限
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Daniel Isaksen - 通讯作者:
Daniel Isaksen
A Cohomological Viewpoint on Elementary School Arithmetic
小学算术的上同调观点
- DOI:
10.1080/00029890.2002.11919915 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Daniel Isaksen - 通讯作者:
Daniel Isaksen
Daniel Isaksen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Isaksen', 18)}}的其他基金
Stable Homotopy Groups: Theory and Computation
稳定同伦群:理论与计算
- 批准号:
2202267 - 财政年份:2022
- 资助金额:
$ 16.68万 - 项目类别:
Continuing Grant
RTG: Electronic Computational Homotopy Theory Research Community
RTG:电子计算同伦理论研究社区
- 批准号:
2135884 - 财政年份:2022
- 资助金额:
$ 16.68万 - 项目类别:
Continuing Grant
Motivic and Equivariant Stable Homotopy Groups
动机和等变稳定同伦群
- 批准号:
1904241 - 财政年份:2019
- 资助金额:
$ 16.68万 - 项目类别:
Continuing Grant
Applications of Pro-Homotopy Theory to Algebra
原同伦理论在代数中的应用
- 批准号:
0503720 - 财政年份:2005
- 资助金额:
$ 16.68万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Next-generation Rhizosphere Monitoring - Non-invasive Plant Phenotyping and Health Monitoring Using the Light-piping Properties of Plant Stems
职业:下一代根际监测 - 利用植物茎的光管特性进行非侵入性植物表型和健康监测
- 批准号:
2238365 - 财政年份:2023
- 资助金额:
$ 16.68万 - 项目类别:
Continuing Grant
Elucidation of novel mechanisms of water tolerance in rice stems
阐明水稻茎耐水性的新机制
- 批准号:
22H02309 - 财政年份:2022
- 资助金额:
$ 16.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Optical & physical properties of flowers & stems: UV to IR & surface texture adaptations for little-known thermal relations in plant growth and reproduction
光学的
- 批准号:
RGPIN-2018-04820 - 财政年份:2022
- 资助金额:
$ 16.68万 - 项目类别:
Discovery Grants Program - Individual
Analysis of mechanisms of starch degradation in the stems for an enhancement of source function to rice grain filling.
茎部淀粉降解机制分析增强水稻籽粒灌浆源功能
- 批准号:
21H02174 - 财政年份:2021
- 资助金额:
$ 16.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Optical & physical properties of flowers & stems: UV to IR & surface texture adaptations for little-known thermal relations in plant growth and reproduction
光学的
- 批准号:
RGPIN-2018-04820 - 财政年份:2021
- 资助金额:
$ 16.68万 - 项目类别:
Discovery Grants Program - Individual
Evolutionary processes of roots from subterranean stems in lycophytes
石松植物地下茎根的进化过程
- 批准号:
21H02553 - 财政年份:2021
- 资助金额:
$ 16.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Vibration Property of Stems: a Possibility of Resonance-induced Periprosthetic Femoral Fracture.
股骨柄的振动特性:共振引起假体周围股骨骨折的可能性。
- 批准号:
20K20271 - 财政年份:2020
- 资助金额:
$ 16.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Optical & physical properties of flowers & stems: UV to IR & surface texture adaptations for little-known thermal relations in plant growth and reproduction
光学的
- 批准号:
RGPIN-2018-04820 - 财政年份:2020
- 资助金额:
$ 16.68万 - 项目类别:
Discovery Grants Program - Individual
Establishing Roots to Grow STEMs: Affirming STEM identity, building community, and improving graduation rates through a multidisciplinary lower division curriculum
扎根成长 STEM:通过多学科低年级课程确认 STEM 身份、建立社区并提高毕业率
- 批准号:
1953362 - 财政年份:2020
- 资助金额:
$ 16.68万 - 项目类别:
Continuing Grant














{{item.name}}会员




