RTG: Electronic Computational Homotopy Theory Research Community
RTG:电子计算同伦理论研究社区
基本信息
- 批准号:2135884
- 负责人:
- 金额:$ 124.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Traditionally, academic research communities are built around departments within universities, requiring participants to be in physical proximity. However, modern telecommunications technology allows people to interact productively in new ways, and online communities will play a growing role in research in the 21st century. This project will develop online relationships and human infrastructure, with the goal of creating a self-sustaining online research community in pure mathematics. This includes graduate student training, fostering collaboration, and building community. Online communities can reach new audiences and take advantage of efficiencies that are not accessible to traditional communities. This project will:* demonstrate to stakeholders that online research communities are a viable and effective means for conducting mathematical research;* experiment with different types of online programs to determine which are the most effective at engaging participants and positively impacting their long-term careers; and* determine whether online communities are more effective than traditional departments at reaching certain audiences, especially with regard to U.S. citizens, nationals, and permanent residents and with regard to groups that are historically underrepresented in the mathematical sciences.The electronic Computational Homotopy Theory (eCHT) research community will conduct online courses, reading seminars, and research seminars, as well as an undergraduate research program. Each year, several graduate students and postdoctoral associates will be funded by the project. Under the supervision of senior personnel from different institutions, these students and postdoctoral associates will manage the eCHT activities. Students and postdoctoral associates will be advised and mentored by the senior personnel in a collaborative online environment.The scientific theme of the project is computational homotopy theory. One aspect of modern homotopy theory is the study of algebraic invariants that inform on the structure of geometric objects. Part of this theory involves the effective computation of these invariants, both for general classes and in very specific cases. One central example is the computation of the stable homotopy groups of spheres. The eCHT research community will focus on these types of computational questions in homotopy theory and will support machine computation, a tool of growing importance in homotopy theory. The participants in the program will be drawn from an exceptionally large pool.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传统上,学术研究社区是围绕大学内的部门建立的,要求参与者在物理上接近。然而,现代电信技术使人们能够以新的方式进行富有成效的互动,在线社区将在21世纪的研究中发挥越来越大的作用。该项目将发展在线关系和人力基础设施,目标是创建一个纯数学自我维持的在线研究社区。这包括研究生培训,促进合作和建立社区。在线社区可以吸引新的受众,并利用传统社区无法获得的效率。该项目将:* 向利益相关者证明,在线研究社区是进行数学研究的可行和有效的手段;* 试验不同类型的在线计划,以确定哪些是最有效的参与者,并对他们的长期职业生涯产生积极影响;并确定在线社区是否比传统部门更有效地接触某些受众,特别是美国公民,国民,电子计算同伦理论(埃赫特)研究社区将开展在线课程,阅读研讨会和研究研讨会,以及本科生研究计划。每年,一些研究生和博士后助理将由该项目资助。在不同机构的高级人员的监督下,这些学生和博士后助理将管理埃赫特的活动。学生和博士后同事将在一个合作的在线环境中得到高级人员的建议和指导。该项目的科学主题是计算同伦理论。现代同伦理论的一个方面是研究代数不变量,这些代数不变量告诉几何对象的结构。这个理论的一部分涉及到这些不变量的有效计算,无论是对于一般类还是在非常特殊的情况下。一个中心的例子是计算稳定的同伦群的领域。埃赫特研究社区将专注于同伦理论中这些类型的计算问题,并将支持机器计算,这是同伦理论中日益重要的工具。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Isaksen其他文献
Classical and Motivic Adams Charts
- DOI:
- 发表时间:
2014-01 - 期刊:
- 影响因子:0
- 作者:
Daniel Isaksen - 通讯作者:
Daniel Isaksen
Etale homotopy and sums-of-squares formulas
Etale 同伦和平方和公式
- DOI:
10.1017/s0305004108001205 - 发表时间:
2006 - 期刊:
- 影响因子:0.8
- 作者:
Daniel Dugger;Daniel Isaksen - 通讯作者:
Daniel Isaksen
The cohomology of motivic A(2)
动机 A(2) 的上同调
- DOI:
10.4310/hha.2009.v11.n2.a13 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Daniel Isaksen - 通讯作者:
Daniel Isaksen
Calculating limits and colimits in pro-categories
计算专业类别中的极限和余极限
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Daniel Isaksen - 通讯作者:
Daniel Isaksen
A Cohomological Viewpoint on Elementary School Arithmetic
小学算术的上同调观点
- DOI:
10.1080/00029890.2002.11919915 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Daniel Isaksen - 通讯作者:
Daniel Isaksen
Daniel Isaksen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Isaksen', 18)}}的其他基金
Stable Homotopy Groups: Theory and Computation
稳定同伦群:理论与计算
- 批准号:
2202267 - 财政年份:2022
- 资助金额:
$ 124.58万 - 项目类别:
Continuing Grant
Motivic and Equivariant Stable Homotopy Groups
动机和等变稳定同伦群
- 批准号:
1904241 - 财政年份:2019
- 资助金额:
$ 124.58万 - 项目类别:
Continuing Grant
Stable stems - the computation of stable homotopy groups of spheres
稳定茎 - 球体稳定同伦群的计算
- 批准号:
1606290 - 财政年份:2016
- 资助金额:
$ 124.58万 - 项目类别:
Standard Grant
Computational motivic homotopy theory
计算动机同伦理论
- 批准号:
0803997 - 财政年份:2008
- 资助金额:
$ 124.58万 - 项目类别:
Standard Grant
Applications of Pro-Homotopy Theory to Algebra
原同伦理论在代数中的应用
- 批准号:
0503720 - 财政年份:2005
- 资助金额:
$ 124.58万 - 项目类别:
Standard Grant
相似海外基金
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 124.58万 - 项目类别:
EU-Funded
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329087 - 财政年份:2023
- 资助金额:
$ 124.58万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329089 - 财政年份:2023
- 资助金额:
$ 124.58万 - 项目类别:
Continuing Grant
Computational prediction of hot-electron chemistry: Towards electronic control of catalysis
热电子化学的计算预测:迈向催化的电子控制
- 批准号:
MR/X023109/1 - 财政年份:2023
- 资助金额:
$ 124.58万 - 项目类别:
Fellowship
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329090 - 财政年份:2023
- 资助金额:
$ 124.58万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329088 - 财政年份:2023
- 资助金额:
$ 124.58万 - 项目类别:
Standard Grant
Computational Engineering of Thermoelectric Materials with Complex Electronic Structures (COMPLEXthermMA)
复杂电子结构热电材料的计算工程(COMPLEXthermMA)
- 批准号:
EP/X02346X/1 - 财政年份:2022
- 资助金额:
$ 124.58万 - 项目类别:
Research Grant
Combined synthesis and computational search for new correlated electronic materials
新型相关电子材料的联合合成和计算搜索
- 批准号:
2713498 - 财政年份:2022
- 资助金额:
$ 124.58万 - 项目类别:
Studentship
Advancing Multi-Omics and Electronic Health Records Computational Methodologies
推进多组学和电子健康记录计算方法
- 批准号:
10408099 - 财政年份:2020
- 资助金额:
$ 124.58万 - 项目类别:
CCP9: Computational Electronic Structure of Condensed Matter
CCP9:凝聚态物质的计算电子结构
- 批准号:
EP/T026375/1 - 财政年份:2020
- 资助金额:
$ 124.58万 - 项目类别:
Research Grant