Nonlinear and geometric effects in quantum condensed matter systems

量子凝聚态物质系统中的非线性和几何效应

基本信息

  • 批准号:
    1606591
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-12-01 至 2020-11-30
  • 项目状态:
    已结题

项目摘要

Nontechnical SummaryThis award supports research and education in the development of theoretical methods to investigate strongly interacting quantum systems. Despite many recent advances, understanding these systems and developing appropriate theoretical tools remains one of the biggest challenges in condensed matter physics. Hydrodynamic methods are among few available approaches to the theory of strongly interacting systems. As the name implies, in certain situations it is feasible to view the complicated interacting quantum system as a fluid, and condense all the generally intractable details into virtual properties: density, velocity, viscosity, etc. As a result, phenomena well known from the study of fluids, such as vortices, shock waves, and turbulence, find analogs in systems of cold atoms or electrons. The project will lead the development of hydrodynamic approaches for a variety of condensed-matter and cold-atom systems. Part of the excitement associated with the proposed line of study stems from the opportunity to apply findings across different areas of research. The developed theoretical tools could be used in diverse fields of physics: quantum many-body theory, nonlinear dynamics, fluid dynamics, nuclear physics, cosmology, etc. The obtained results will be verified by numerical simulations and, ultimately, by comparison with experiments.The proposed research will provide a rich environment for the comprehensive training of graduate students in modern theoretical methods. The PI continues to give lectures on the uses of topology and geometry in condensed matter physics, and plans to prepare lecture notes for publication. The PI further plans to develop the notes into a book on topological aspects of condensed matter physics aimed at the broader community of scientists. The PI is enthusiastic about teaching math and physics to K-12 students in the enrichment program for children at Stony Brook, and to gifted high-school students in Russia.Technical SummaryThis award supports research and education in the development of theoretical methods to investigate strongly interacting quantum systems. Finding efficient ways to work with strongly interacting quantum systems is one of the most fundamental problems in condensed matter physics. It has been the focus of both experimental and theoretical research for the last three decades. To make progress in understanding systems with strong interactions, non-perturbative methods are needed. One of these few methods is the hydrodynamic approach, which provides a general framework for treating interacting quantum and classical systems. The project will develop new geometrical methods in condensed matter physics and look for applications to quantum transport phenomena.The proposed research is in the general direction of "geometrizing condensed matter physics", and progresses through the essential use of symmetries and effective descriptions. The PI expects to expand the understanding of the role of geometry in quantum many-body systems. The research uses geometric ideas and the hydrodynamic approach in studies of fractional quantum Hall systems and more general condensed matter systems. The proposed projects include thermal transport, and boundary-bulk relations for quantum Hall systems, anomalous hydrodynamics of quantum and classical systems, transport in chiral materials, and geometric aspects of out-of-equilibrium physics. Geometric ideas will be applied to analyze specific experiments on quantum transport.Part of the excitement associated with the proposed line of study stems from the opportunity to apply findings across different areas of research. The developed theoretical tools could be used in diverse fields of physics: quantum many-body theory, nonlinear dynamics, fluid dynamics, nuclear physics, cosmology, etc. The obtained results will be verified by numerical simulations and, ultimately, by comparison with experiments.The proposed research will provide a rich environment for the comprehensive training of graduate students in modern theoretical methods. The PI continues to give lectures on the uses of topology and geometry in condensed matter physics, and plans to prepare lecture notes for publication. The PI further plans to develop the notes into a book on topological aspects of condensed matter physics aimed at the broader community of scientists. The PI is enthusiastic about teaching math and physics to K-12 students in the enrichment program for children at Stony Brook, and to gifted high-school students in Russia.
非技术性总结该奖项支持研究和教育的理论方法的发展,以调查强相互作用的量子系统。尽管最近取得了许多进展,但理解这些系统并开发适当的理论工具仍然是凝聚态物理学中最大的挑战之一。流体动力学方法是强相互作用系统理论的少数可用方法之一。顾名思义,在某些情况下,将复杂的相互作用量子系统视为流体是可行的,并将所有通常难以处理的细节浓缩为虚拟属性:密度,速度,粘度等。该项目将领导各种凝聚物质和冷原子系统的流体动力学方法的发展。与拟议的研究路线相关的兴奋部分源于将研究结果应用于不同研究领域的机会。所开发的理论工具可应用于量子多体理论、非线性动力学、流体动力学、核物理、宇宙学等物理学领域。所获得的结果将通过数值模拟并最终与实验进行比较来验证。拟议的研究将为研究生现代理论方法的综合培养提供丰富的环境。PI继续在凝聚态物理学中讲授拓扑学和几何学的应用,并计划准备演讲稿以供出版。PI进一步计划将这些笔记发展成一本关于凝聚态物理学拓扑方面的书,面向更广泛的科学家群体。PI热衷于在斯托尼布鲁克的儿童丰富计划中向K-12学生教授数学和物理,以及向俄罗斯有天赋的高中生教授数学和物理。技术摘要该奖项支持在研究强相互作用量子系统的理论方法发展方面的研究和教育。寻找有效的方法来处理强相互作用的量子系统是凝聚态物理学中最基本的问题之一。在过去的三十年里,它一直是实验和理论研究的焦点。为了在理解强相互作用系统方面取得进展,需要非微扰方法。这几种方法之一是流体动力学方法,它提供了一个通用的框架来处理相互作用的量子和经典系统。该计划将发展凝聚态物理学的新几何方法,并寻求应用于量子输运现象。拟议的研究是在“凝聚态物理学的几何化”的大方向,并通过对称性的基本使用和有效的描述进行进展。PI希望扩大对量子多体系统中几何作用的理解。本研究将几何思想和流体力学方法应用于分数量子霍尔系统和更一般的凝聚态系统的研究。拟议的项目包括热输运,量子霍尔系统的边界-体积关系,量子和经典系统的反常流体动力学,手性材料的运输,以及平衡物理学的几何方面。几何思想将被应用于分析量子输运的具体实验。与拟议的研究路线相关的部分兴奋源于有机会将研究结果应用于不同的研究领域。所开发的理论工具可应用于量子多体理论、非线性动力学、流体动力学、核物理、宇宙学等物理学领域。所获得的结果将通过数值模拟并最终与实验进行比较来验证。拟议的研究将为研究生现代理论方法的综合培养提供丰富的环境。PI继续在凝聚态物理学中讲授拓扑学和几何学的应用,并计划准备演讲稿以供出版。PI进一步计划将这些笔记发展成一本关于凝聚态物理学拓扑方面的书,面向更广泛的科学家群体。PI热衷于在斯托尼布鲁克的儿童充实计划中向K-12学生教授数学和物理,并向俄罗斯的天才高中生教授数学和物理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Abanov其他文献

Alexander Abanov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Abanov', 18)}}的其他基金

Nonlinear and geometric effects in quantum condensed matter systems
量子凝聚态物质系统中的非线性和几何效应
  • 批准号:
    2116767
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Workshop:Facets of Integrability: Random Patterns, Stochastic Processes, Hydrodynamics, Gauge Theories and Condensed Matter Systems-the Simons Ctr for Geometry&Physics 1/21-27/
研讨会:可积性的各个方面:随机模式、随机过程、流体动力学、规范理论和凝聚态系统-西蒙斯几何中心
  • 批准号:
    1310360
  • 财政年份:
    2013
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Nonlinear effects in quantum condensed matter systems
量子凝聚态物质系统中的非线性效应
  • 批准号:
    1206790
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Nonlinear Effects in Quantum Condensed Matter Systems
量子凝聚态系统中的非线性效应
  • 批准号:
    0906866
  • 财政年份:
    2009
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
CAREER: Geometry and Interference in Strongly Correlated Systems
职业:强相关系统中的几何和干涉
  • 批准号:
    0348358
  • 财政年份:
    2004
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
对RS和AG码新型软判决代数译码的研究
  • 批准号:
    61671486
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Ginzburg-Landau 型发展方程的拓扑缺陷以及相关问题研究
  • 批准号:
    11071206
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
Bose-Einstein凝聚、超导G-L模型以及相关问题研究
  • 批准号:
    10771181
  • 批准年份:
    2007
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAS: Collaborative Research: Separating Electronic and Geometric Effects in Compound Catalysts: Examining Unique Selectivities for Hydrogenolysis on Transition Metal Phosphides
CAS:合作研究:分离复合催化剂中的电子效应和几何效应:检验过渡金属磷化物氢解的独特选择性
  • 批准号:
    2409888
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Nonlinear and geometric effects in quantum condensed matter systems
量子凝聚态物质系统中的非线性和几何效应
  • 批准号:
    2116767
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Separating Electronic and Geometric Effects in Compound Catalysts: Examining Unique Selectivities for Hydrogenolysis on Transition Metal Phosphides
CAS:合作研究:分离复合催化剂中的电子效应和几何效应:检验过渡金属磷化物氢解的独特选择性
  • 批准号:
    1954426
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Separating Electronic and Geometric Effects in Compound Catalysts: Examining Unique Selectivities for Hydrogenolysis on Transition Metal Phosphides
CAS:合作研究:分离复合催化剂中的电子效应和几何效应:检验过渡金属磷化物氢解的独特选择性
  • 批准号:
    1954111
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Separating Electronic and Geometric Effects in Compound Catalysts: Examining Unique Selectivities for Hydrogenolysis on Transition Metal Phosphides
CAS:合作研究:分离复合催化剂中的电子效应和几何效应:检验过渡金属磷化物氢解的独特选择性
  • 批准号:
    1954611
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Determination of post-shakedown quantities with the Simplified Theory of Plastic Zones including second-order geometric effects
使用塑性区简化理论(包括二阶几何效应)确定安定后量
  • 批准号:
    416907346
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grants
Comprehensive analysis and mitigation of the clinical effects of delineation and geometric uncertainties in conformal radiation therapy
适形放射治疗中轮廓和几何不确定性临床效果的综合分析和缓解
  • 批准号:
    10218076
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
Ras/MAPK Mutations Effects on the Developing Brain
Ras/MAPK 突变对大脑发育的影响
  • 批准号:
    10365914
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
Comprehensive analysis and mitigation of the clinical effects of delineation and geometric uncertainties in conformal radiation therapy
适形放射治疗中轮廓和几何不确定性临床效果的综合分析和缓解
  • 批准号:
    10460951
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
Development of emergent electronic properties originated from geometric structures of crystals and local correlation effects
源于晶体几何结构和局域相关效应的新兴电子特性的发展
  • 批准号:
    18K03542
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了