Accelerated Sintering in "Nano-Duplex" Dual Phase Nanostructured Alloys

“纳米双相”双相纳米结构合金的加速烧结

基本信息

  • 批准号:
    1606914
  • 负责人:
  • 金额:
    $ 41.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Nontechnical AbstractFor decades, researchers have been pursuing so-called "nanocrystalline" alloys as next-generation materials. These materials have very finely controlled internal structures at the scale of just a few dozen atoms, and show dramatic improvements in strength, wear resistance, corrosion resistance, and many other functional properties. While laboratory work has succeeded in producing small samples of nanocrystalline material, this has not yet translated to commercial-scale production of "bulk" alloys, i.e., materials big enough to make engineering componentry from. This project is developing a scientific approach to solve the problem of scalability for these advanced materials. It explores the science of alloying in nanostructured powders that can be consolidated at high temperatures into bulk components, while still retaining the nanocrystalline structure. Scientifically, the project aims to develop a deep understanding of nanocrystalline alloy powders, their structure, and their processability. The project combines experimental and simulation-based tools, and focuses on a model alloy system based on the metal tungsten, used widely in cutting tools and machining equipment. Technologically, the project will identify alloys and processes that are significantly more cost-effective and energy-efficient than any known today. The broader impact of the proposal thus combines possible commercial advances in premium structural materials, with a wide range of educational benefits in the training of undergraduate and graduate students involved with the project. Technical AbstractThe proposed work will develop the fundamental physics of a new class of thermodynamically stabilized nanostructured materials, called "nano-duplex" alloys, as well as a newly discovered rapid sintering mechanism that can only be induced in this class of nanostructured materials. Because these alloys exhibit the potential for rapid powder consolidation while retaining a stable nanoscale structure, they may hold the key to cost- and energy-efficient, scalable, and broadly commercially applicable synthesis of bulk nanostructured metals. These discoveries enable nanostructured alloys with nanoscale grain sizes that are stable through a full high-temperature consolidation cycle to full density, without the need for applied pressures or fields. In terms of intelletucal merits, the project will explore this new class of nanostructured alloys and the mechanisms by which they sinter. A systematic experimental study is proposed on the W-Cr system, exploring the role of alloy composition, temperature, impurity content and other processing variables on the mechanisms of densification. Kinetic parameters such as activation energies and activation volumes will be quantified, and compared with observations of microstructure evolution. Additionally, a new kinetic Monte Carlo simulation approach will be developed, calibrated, and applied to study the mechanisms of densification and to identify the separate roles of interfaces and nano-scale second phases on sintering. In the out years of the project additional alloying systems will be explored to demonstrate the broader applicability of this sintering mechanism to other technologically relevant alloys that are amenable to powder route production. In terms of broader impacts, the proposal combines possible commercial advances in advanced structural materials, with a wide range of educational benefits in the training of undergraduate and graduate students on the new sintering method itself as well as on the different characterization and modeling methods that are used in the project.
几十年来,研究人员一直在寻求所谓的“纳米晶”合金作为下一代材料。 这些材料在几十个原子的尺度上具有非常精细的控制内部结构,并且在强度、耐磨性、耐腐蚀性和许多其他功能特性方面表现出显着的改善。 虽然实验室工作已经成功地生产了纳米晶体材料的小样品,但这还没有转化为“块体”合金的商业规模生产,即,大到足以制造工程部件的材料。该项目正在开发一种科学的方法来解决这些先进材料的可扩展性问题。 它探讨了纳米结构粉末的合金化科学,这些粉末可以在高温下固结成块状部件,同时仍然保留纳米晶结构。该项目旨在深入了解纳米晶合金粉末,其结构和可加工性。 该项目结合了实验和仿真工具,重点是基于金属钨的模型合金系统,广泛应用于切削工具和加工设备。在技术上,该项目将确定比当今已知的任何合金和工艺都更具成本效益和能源效率。因此,该提案的更广泛影响结合了优质结构材料的可能商业进步,以及参与该项目的本科生和研究生培训的广泛教育效益。 技术摘要拟议的工作将开发一类新型热力学稳定的纳米结构材料(称为“纳米双相”合金)的基础物理学,以及新发现的只能在此类纳米结构材料中诱导的快速烧结机制。由于这些合金表现出快速粉末固结的潜力,同时保持稳定的纳米级结构,它们可能是成本和能源效率,可扩展和广泛的商业适用的大块纳米结构金属合成的关键。这些发现使得具有纳米级晶粒尺寸的纳米结构合金能够在整个高温固结循环中稳定地达到全密度,而不需要施加压力或场。在智力方面,该项目将探索这类新的纳米结构合金及其烧结机制。对W-Cr系合金进行了系统的实验研究,探讨了合金成分、温度、杂质含量等工艺参数对致密化机理的影响。动力学参数,如活化能和活化体积将被量化,并与微观结构演变的观察进行比较。此外,一个新的动力学蒙特卡罗模拟方法将被开发,校准,并应用于研究致密化的机制,并确定界面和纳米级的第二相烧结的单独作用。在项目的最后几年,将探索其他合金系统,以证明这种烧结机制对其他技术相关合金的更广泛适用性,这些合金适合粉末路线生产。 就更广泛的影响而言,该提案结合了先进结构材料的可能商业进步,以及对本科生和研究生进行新烧结方法本身以及项目中使用的不同表征和建模方法培训的广泛教育效益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Schuh其他文献

Modeling gas diffusion into metals with a moving-boundary phase transformation
Kinetics of biaxial dome formation by transformation superplasticity of titanium alloys and composites
钛合金及复合材料相变超塑性双轴圆顶形成动力学
Enhanced densification of cavitated dispersion-strengthened aluminum by thermal cycling

Christopher Schuh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Schuh', 18)}}的其他基金

Collaborative Research: Martensitic Transformations in Paraelectric Shape Memory Ceramics Activated by an Electric Field
合作研究:电场激活顺电形状记忆陶瓷中的马氏体转变
  • 批准号:
    2204638
  • 财政年份:
    2022
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Continuing Grant
Entropy and Phase Transformations in Stable Nanocrystalline Alloys
稳定纳米晶合金中的熵和相变
  • 批准号:
    2002860
  • 财政年份:
    2020
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Continuing Grant
Computation of Grain Boundary Energy Landscapes as a Tool for Grain Boundary Engineering
晶界能量景观计算作为晶界工程的工具
  • 批准号:
    1332789
  • 财政年份:
    2013
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
Quantifying Material Microstructures with Quaternions
用四元数量化材料微观结构
  • 批准号:
    0855402
  • 财政年份:
    2009
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
Processing of Functionally Graded Nanocrystalline Alloys
功能梯度纳米晶合金的加工
  • 批准号:
    0620304
  • 财政年份:
    2006
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
CAREER: Development and Experimental Validation of Percolation Theory for Interfacial Networks in Materials
职业:材料界面网络渗流理论的发展和实验验证
  • 批准号:
    0346848
  • 财政年份:
    2004
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Continuing Grant

相似海外基金

Clarification of multiscale sintering process by using synchrotron X-ray nano-CT
使用同步加速器 X 射线纳米 CT 阐明多尺度烧结过程
  • 批准号:
    19K15289
  • 财政年份:
    2019
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Preparation of rapid conductive thin film layer by nano-copper blow-out by slightly oxidized copper particles and low temperature sintering
微氧化铜颗粒吹出纳米铜并低温烧结制备快速导电薄膜层
  • 批准号:
    19K22094
  • 财政年份:
    2019
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Understanding of phase separation mechanism of transition metal-base carbide during spark plasma sintering and thermal annealing and their nano-structure control
过渡金属基碳化物在放电等离子烧结和热退火过程中的相分离机制及其纳米结构控制的理解
  • 批准号:
    16H04211
  • 财政年份:
    2016
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New method to make the high precise restoration from a complete sintering zirconia ceramic block by applying transpiration with a nano-laser
通过纳米激光蒸腾作用对完全烧结氧化锆陶瓷块进行高精度修复的新方法
  • 批准号:
    15K11204
  • 财政年份:
    2015
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evolution of 3-dimensional pore structures in submicron/nano scale during sintering
烧结过程中亚微米/纳米尺度三维孔隙结构的演变
  • 批准号:
    25630323
  • 财政年份:
    2013
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
A Workshop for Scientific Issues on Medical Applications of Micro/Nano Powder Injection Molding-Molding, Sintering, Modeling, and Commercial Applications
微/纳米粉末注射成型医学应用科学问题研讨会——成型、烧结、建模和商业应用
  • 批准号:
    0738021
  • 财政年份:
    2008
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
A Workshop for Scientific Issues on Medical Applications of Micro/Nano Powder Injection Molding-Molding, Sintering, Modeling, and Commercial Applications
微/纳米粉末注射成型医学应用科学问题研讨会——成型、烧结、建模和商业应用
  • 批准号:
    0913099
  • 财政年份:
    2008
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
An Integrated Approach for Modeling Nano- and Femtosecond Laser Sintering of Metallic Micro- and Nanoparticles
模拟金属微米和纳米粒子纳米和飞秒激光烧结的集成方法
  • 批准号:
    0730143
  • 财政年份:
    2007
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
Sintering and Crystal Orientation of Nano-particle with Stacking Disordered Structure
无序堆积结构纳米粒子的烧结及晶体取向
  • 批准号:
    19350104
  • 财政年份:
    2007
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
U.S.-Egypt Joint Cooperative Research: Preparation and Sintering of Nano-SiC from Waste Silica Fume via an Integrated Mechanical and Thermal Activation Process
美国-埃及联合合作研究:通过机械和热活化一体化工艺从废硅粉中制备和烧结纳米碳化硅
  • 批准号:
    0511931
  • 财政年份:
    2005
  • 资助金额:
    $ 41.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了