Entropy and Phase Transformations in Stable Nanocrystalline Alloys
稳定纳米晶合金中的熵和相变
基本信息
- 批准号:2002860
- 负责人:
- 金额:$ 42.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical SummaryNanocrystalline alloys are next-generation materials that are composed of many very small crystal grains, adhered together at disordered "grain boundaries". These materials have a variety of exceptional properties like extreme strength and wear resistance. They are also beginning to transition from laboratory curiosities to widely-adopted engineering materials thanks to a critically enabling concept: the stabilization of their grain boundaries by adding alloying elements. Traditional alloy science ignores the effect of grain boundaries, but these cannot be ignored in nanocrystalline metals where they are so prominent. Therefore, new alloy science is needed for these materials, with a focus on integrating the interactions between grain boundaries and alloying additions. This project studies the alloy science of nanocrystalline materials, with a special focus on the effects of temperature and maintaining stability at high temperatures. The project uses computer simulations at the atomic scale to explore the stability of various alloys in nanostructured form, and identifies limits to the compositions and conditions under which nanocrystalline structures can be formed. Experiments are conducted to make and test these new theoretical advances, and to produce the first prototype samples of new nanocrystalline alloys. These developments are expected to lead to a predictive scientific toolkit for the future design of new families of nanocrystalline alloys, for use in a wide array of applications ranging from electronics, to machine components, to 3D printing. The research in this project is carried out by undergraduate, graduate, and postdoctoral students at MIT as part of their training in materials science. The project team also engages with industry scientists to focus the work on relevant materials and applications, and to align the research for impact through future technology transfer.Technical SummaryThe intellectual merits of this research program center on resolving the role of entropy in nanostructured alloys. Specifically, the project is developing a full view of configurational and vibrational entropy on grain boundary segregation in polycrystals, through atomistic computations that can separate these two contributions in a system with a full polycrystalline spectrum of grain boundary sites. This information in turn enables a full analysis of the free energy competition between bulk phases and nanostructured states, including details like boundary structural transitions (or complexion transitions) and allotropic phase transformations in the bulk. The overarching goal of the project is to achieve sufficiently quantitative thermodynamic calculations to be able to predict alloy phase diagrams complete with equilibrium and metastable nanocrystalline structures, and then to provide experimental tests of those predictions. The broader impacts of this program comprise a variety of training, outreach and dissemination activities. Undergraduate, graduate, and postdoctoral researchers are trained on topics at the intersection of classical materials science core concepts (alloy thermodynamics, phase equilibria) and new topics in nanoscience (nanostructure stabilization). The research results are published in the open literature and also disseminated widely to industry through the outreach activities of the PI. In particular, industrial interactions are used to guide the research efforts towards relevant materials and temperatures of interest for practical purposes, facilitating future technology transfer.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术概述纳米晶体合金是由许多非常小的晶粒组成的下一代材料,这些晶粒在无序的“晶界”处粘附在一起。这些材料具有各种特殊的性能,如极高的强度和耐磨性。它们也开始从实验室的好奇心转变为广泛采用的工程材料,这要归功于一个关键的概念:通过添加合金元素来稳定晶界。传统的合金科学忽略了晶界的影响,但在纳米晶金属中,这些晶界是不可忽视的,它们非常突出。因此,这些材料需要新的合金科学,重点是整合晶界和合金添加剂之间的相互作用。该项目研究纳米晶材料的合金科学,特别关注温度的影响和在高温下保持稳定性。该项目使用原子尺度的计算机模拟来探索纳米结构形式的各种合金的稳定性,并确定了可以形成纳米晶体结构的成分和条件的限制。 实验进行,使和测试这些新的理论进展,并产生新的纳米晶合金的第一个原型样品。这些发展预计将为未来设计新的纳米晶合金系列提供预测性科学工具包,用于从电子产品到机器部件再到3D打印的广泛应用。该项目的研究由麻省理工学院的本科生、研究生和博士后学生进行,作为他们材料科学培训的一部分。该项目团队还与行业科学家合作,将工作重点放在相关材料和应用上,并通过未来的技术转让调整研究影响。技术摘要该研究计划的智力优势集中在解决熵在纳米结构合金中的作用。具体来说,该项目正在开发一个全面的视图的组态和振动熵的晶界偏析多晶体,通过原子计算,可以分开这两个贡献在一个系统中的一个完整的多晶谱的晶界网站。这些信息反过来又能够全面分析体相和纳米结构状态之间的自由能竞争,包括像边界结构转变(或肤色转变)和同素异形体相变等细节。该项目的首要目标是实现充分定量的热力学计算,以便能够预测具有平衡和亚稳纳米晶结构的合金相图,然后提供这些预测的实验测试。该方案的广泛影响包括各种培训、外联和传播活动。本科生,研究生和博士后研究人员在经典材料科学核心概念(合金热力学,相平衡)和纳米科学(纳米结构稳定化)的新主题的交叉点上进行培训。研究结果发表在公开文献中,并通过PI的外联活动向业界广泛传播。特别是,工业相互作用被用于指导研究工作,以实现实用目的,促进未来的技术转让。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Breakdown of the Hall-Petch relationship in extremely fine nanograined body-centered cubic Mo alloys
- DOI:10.1016/j.actamat.2021.116950
- 发表时间:2021-05
- 期刊:
- 影响因子:9.4
- 作者:F. Duan;Y. Naunheim;C. Schuh;Y. Li
- 通讯作者:F. Duan;Y. Naunheim;C. Schuh;Y. Li
The Vibrational Entropy Spectra of Grain Boundary Segregation in Polycrystals
- DOI:10.1016/j.actamat.2022.118630
- 发表时间:2022-12
- 期刊:
- 影响因子:9.4
- 作者:Nutth Tuchinda;C. Schuh
- 通讯作者:Nutth Tuchinda;C. Schuh
Thermodynamics and design of nanocrystalline alloys using grain boundary segregation spectra
- DOI:10.1016/j.actamat.2021.117177
- 发表时间:2021-09
- 期刊:
- 影响因子:9.4
- 作者:M. Wagih;C. Schuh
- 通讯作者:M. Wagih;C. Schuh
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Schuh其他文献
Modeling gas diffusion into metals with a moving-boundary phase transformation
- DOI:
10.1007/s11661-000-0186-z - 发表时间:
2000-10-01 - 期刊:
- 影响因子:2.500
- 作者:
Christopher Schuh - 通讯作者:
Christopher Schuh
Kinetics of biaxial dome formation by transformation superplasticity of titanium alloys and composites
钛合金及复合材料相变超塑性双轴圆顶形成动力学
- DOI:
10.1007/s11661-002-0176-4 - 发表时间:
2002-06-01 - 期刊:
- 影响因子:2.500
- 作者:
Megan Frary;Christopher Schuh;David C. Dunand - 通讯作者:
David C. Dunand
Enhanced densification of cavitated dispersion-strengthened aluminum by thermal cycling
- DOI:
10.1007/s11661-000-0209-9 - 发表时间:
2000-10-01 - 期刊:
- 影响因子:2.500
- 作者:
Christopher Schuh;David C. Dunand;Bing Q. Han - 通讯作者:
Bing Q. Han
Christopher Schuh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Schuh', 18)}}的其他基金
Collaborative Research: Martensitic Transformations in Paraelectric Shape Memory Ceramics Activated by an Electric Field
合作研究:电场激活顺电形状记忆陶瓷中的马氏体转变
- 批准号:
2204638 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
Continuing Grant
Accelerated Sintering in "Nano-Duplex" Dual Phase Nanostructured Alloys
“纳米双相”双相纳米结构合金的加速烧结
- 批准号:
1606914 - 财政年份:2016
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Computation of Grain Boundary Energy Landscapes as a Tool for Grain Boundary Engineering
晶界能量景观计算作为晶界工程的工具
- 批准号:
1332789 - 财政年份:2013
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Quantifying Material Microstructures with Quaternions
用四元数量化材料微观结构
- 批准号:
0855402 - 财政年份:2009
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Processing of Functionally Graded Nanocrystalline Alloys
功能梯度纳米晶合金的加工
- 批准号:
0620304 - 财政年份:2006
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
CAREER: Development and Experimental Validation of Percolation Theory for Interfacial Networks in Materials
职业:材料界面网络渗流理论的发展和实验验证
- 批准号:
0346848 - 财政年份:2004
- 资助金额:
$ 42.55万 - 项目类别:
Continuing Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
New Rules for Coupled Severe Plastic Deformations, Phase Transformations, and Structural Changes in Metals under High Pressure
高压下金属耦合严重塑性变形、相变和结构变化的新规则
- 批准号:
2246991 - 财政年份:2023
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Synthesising novel phases of carbon by shear-induced phase transformations
通过剪切诱导相变合成碳的新相
- 批准号:
DP230101407 - 财政年份:2023
- 资助金额:
$ 42.55万 - 项目类别:
Discovery Projects
Elucidation of polymorphs and novel properties of SiGe alloys developed by high-pressure phase transformations
阐明高压相变开发的 SiGe 合金的多晶型和新特性
- 批准号:
23H01712 - 财政年份:2023
- 资助金额:
$ 42.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mechanism of hydrogen-induced phase transformations in Ti-Ni superelastic alloys
Ti-Ni超弹性合金氢致相变机理
- 批准号:
23K13540 - 财政年份:2023
- 资助金额:
$ 42.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study of local crystal structures and microscopic mechanism of Martensitic phase transformations using electron nano-probe
利用电子纳米探针研究马氏体相变的局部晶体结构和微观机制
- 批准号:
22H01150 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Phase transformations in the heat-affected zone of microalloyed steels
微合金钢热影响区的相变
- 批准号:
RGPIN-2020-04226 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
Discovery Grants Program - Individual
NSF-BSF: Stress-Assisted Structural Phase Transformations and Plasticity in Bicontinuous Nanomaterials
NSF-BSF:双连续纳米材料中的应力辅助结构相变和塑性
- 批准号:
2208681 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
Standard Grant
Real-time imaging of light-induced transformations in phase-change materials
相变材料中光诱导转变的实时成像
- 批准号:
RGPIN-2021-03797 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Decoding Crystal Growth and Phase Transformations of Complex Structures With Minimalist Self-Assembly Models
职业:用极简自组装模型解码复杂结构的晶体生长和相变
- 批准号:
2144094 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
Continuing Grant
Study of the fundamental role of interfacial mobilities during phase transformations in aluminium alloys
铝合金相变过程中界面迁移率基本作用的研究
- 批准号:
RGPIN-2018-04530 - 财政年份:2022
- 资助金额:
$ 42.55万 - 项目类别:
Discovery Grants Program - Individual