US-French Collaboration: Collaborative Research: Neuro-Computational Models of Natural Language
美法合作:合作研究:自然语言的神经计算模型
基本信息
- 批准号:1607441
- 负责人:
- 金额:$ 56.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our society is built upon shared ideas, ideas that get from one person to another via language that is "understood." But how do brains give us the ability to understand a stream of spoken words? This is a grand challenge question in computational neuroscience. This project addresses it using mathematical models of the language understanding process. These models reflect insights from computer science as well as linguistics. They allow investigators to ask: which process model best accounts for the signals from a particular brain region, at particular moment in time? The signals come from people listening to French and English versions of the same book. By comparing across models and across languages, the project seeks to differentiate between aspects of the understanding process that are language-specific and aspects that might be common to all humans. Increasingly precise modeling of this sort paves the way for future work with individuals who have trouble using language, such as those with Autism Spectrum Disorder. It could also lead to better computer systems, ones that use language in a brain-inspired way.Bringing together computational linguists and cognitive neuroscientists, this project pursues two specific questions: (1) what aspects of sentence structure determine our expectations for upcoming words? and (2) what is the detailed balance between memorization and composition in natural language? Using electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) the PIs examine participants' neural responses to the spoken recitation of a literary work. These neural signals are fitted by time series predictors, themselves derived from linguistically plausible grammars and other language models. The project explores a family of such models, varying the size of grammatical units as well as the propensity for such units to be simply memorized as opposed to built up, step by step. Via information-theoretical complexity metrics, these theories derive quantitative predictions about the moment-by-moment neural responses of a person hearing a story. The approach as a whole leads to computationally explicit process models that are grounded in human brain responses to naturalistic text across two languages.A companion project is being funded by the French National Research Agency (ANR).
我们的社会是建立在共享的思想,思想从一个人到另一个通过语言是“理解”。“但是大脑是如何赋予我们理解一连串口语的能力的呢?这是计算神经科学中的一个重大挑战性问题。这个项目使用语言理解过程的数学模型来解决这个问题。这些模型反映了计算机科学和语言学的见解。研究人员可以借此提出这样一个问题:哪种处理模型最能解释在特定时刻来自特定大脑区域的信号?这些信号来自于听同一本书的法语和英语版本的人。通过跨模型和跨语言的比较,该项目试图区分理解过程中特定语言的方面和可能对所有人都通用的方面。这种日益精确的建模为未来与语言使用困难的个人(例如自闭症谱系障碍患者)的合作铺平了道路。这个项目将计算语言学家和认知神经科学家聚集在一起,研究两个具体的问题:(1)句子结构的哪些方面决定了我们对即将出现的单词的预期?(2)自然语言中记忆和写作的平衡点是什么?使用脑电图(EEG)和功能性磁共振成像(fMRI),PI检查参与者对文学作品的口头背诵的神经反应。这些神经信号由时间序列预测器拟合,这些预测器本身来自语言学上合理的语法和其他语言模型。该项目探索了一系列这样的模型,改变了语法单位的大小,以及这些单位的倾向,简单地记忆,而不是建立起来,一步一步。通过信息理论复杂性度量,这些理论可以对一个人听故事时的每时每刻的神经反应进行定量预测。这种方法作为一个整体,可以产生基于人脑对两种语言自然文本反应的计算显式过程模型。法国国家研究机构(ANR)正在资助一个配套项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Hale其他文献
Processing MWEs: Neurocognitive Bases of Verbal MWEs and Lexical Cohesiveness within MWEs
处理 MWE:言语 MWE 的神经认知基础和 MWE 中的词汇衔接性
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Shohini Bhattasali;Murielle Fabre;John Hale - 通讯作者:
John Hale
Text Genre and Training Data Size in Human-like Parsing
类人解析中的文本类型和训练数据大小
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
John Hale;A. Kuncoro;Keith B. Hall;Chris Dyer;Jonathan Brennan - 通讯作者:
Jonathan Brennan
Modeling Incremental Language Comprehension in the Brain with Combinatory Categorial Grammar
用组合范畴语法对大脑中的渐进语言理解进行建模
- DOI:
10.18653/v1/2021.cmcl-1.3 - 发表时间:
2021 - 期刊:
- 影响因子:5.3
- 作者:
Miloš Stanojević;Shohini Bhattasali;Donald Dunagan;Luca Campanelli;Mark Steedman;Jonathan Brennan;John Hale - 通讯作者:
John Hale
Modeling fMRI time courses with linguistic structure at various grain sizes
使用不同粒度的语言结构对 fMRI 时间过程进行建模
- DOI:
10.3115/v1/w15-1110 - 发表时间:
2015 - 期刊:
- 影响因子:3.6
- 作者:
John Hale;David Lutz;W. Luh;Jonathan Brennan - 通讯作者:
Jonathan Brennan
The Shifting Sands of Security Management
- DOI:
10.1007/s10922-005-6261-5 - 发表时间:
2005-09-01 - 期刊:
- 影响因子:3.900
- 作者:
Paul Brusil;John Hale - 通讯作者:
John Hale
John Hale的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Hale', 18)}}的其他基金
US-French Collaboration: Collaborative Research: Neuro-Computational Models of Natural Language
美法合作:合作研究:自然语言的神经计算模型
- 批准号:
1903783 - 财政年份:2018
- 资助金额:
$ 56.98万 - 项目类别:
Continuing Grant
MRI: Development of Heterogeneous Cluster for Cyber-Physical System Hybrid Analytics
MRI:用于信息物理系统混合分析的异构集群的开发
- 批准号:
1531270 - 财政年份:2015
- 资助金额:
$ 56.98万 - 项目类别:
Standard Grant
TWC: Small: Scalable Hybrid Attack Graph Modeling and Analysis
TWC:小型:可扩展的混合攻击图建模和分析
- 批准号:
1524940 - 财政年份:2015
- 资助金额:
$ 56.98万 - 项目类别:
Standard Grant
CAREER: Automaton Theories of Human Sentence Comprehension
职业:人类句子理解的自动机理论
- 批准号:
0741666 - 财政年份:2008
- 资助金额:
$ 56.98万 - 项目类别:
Continuing Grant
CT-ISG: Compound Exposure Analysis: Security Metrics and Applications
CT-ISG:化合物暴露分析:安全指标和应用
- 批准号:
0524740 - 财政年份:2005
- 资助金额:
$ 56.98万 - 项目类别:
Standard Grant
CAREER: Programmable Security for Distributed Systems and Databases
职业:分布式系统和数据库的可编程安全性
- 批准号:
9984774 - 财政年份:2000
- 资助金额:
$ 56.98万 - 项目类别:
Continuing Grant
相似海外基金
US-French Collaboration: Collaborative Research: Neuro-Computational Models of Natural Language
美法合作:合作研究:自然语言的神经计算模型
- 批准号:
1903783 - 财政年份:2018
- 资助金额:
$ 56.98万 - 项目类别:
Continuing Grant
Influence of collaboration between Japanese and French artists and Eileen Gray on European art.
日本和法国艺术家与艾琳·格雷的合作对欧洲艺术的影响。
- 批准号:
16K02287 - 财政年份:2016
- 资助金额:
$ 56.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
US-French Collaboration: Collaborative Research: Neuro-Computational Models of Natural Language
美法合作:合作研究:自然语言的神经计算模型
- 批准号:
1607251 - 财政年份:2016
- 资助金额:
$ 56.98万 - 项目类别:
Continuing Grant
US-French Collaboration: Mechanisms of emergent OscillaTIONs in the septo-hippocampal network-MOTION
美法合作:海马隔网络中突发振荡的机制-MOTION
- 批准号:
1614645 - 财政年份:2015
- 资助金额:
$ 56.98万 - 项目类别:
Standard Grant
CRCNS: US-French Collaboration: Dopamine modulation of calcium in STDP
CRCNS:美法合作:STDP 中钙的多巴胺调节
- 批准号:
9330134 - 财政年份:2014
- 资助金额:
$ 56.98万 - 项目类别:
CRCNS: US-French Collaboration: Dopamine modulation of calcium in STDP
CRCNS:美法合作:STDP 中钙的多巴胺调节
- 批准号:
8837243 - 财政年份:2014
- 资助金额:
$ 56.98万 - 项目类别:
US-French Collaboration: Auditory computations for interpreting and producing communication signals.
美法合作:用于解释和产生通信信号的听觉计算。
- 批准号:
1311446 - 财政年份:2013
- 资助金额:
$ 56.98万 - 项目类别:
Continuing Grant
US-French Collaboration: Mechanisms of emergent OscillaTIONs in the septo-hippocampal network-MOTION
美法合作:海马隔网络中突发振荡的机制-MOTION
- 批准号:
1310378 - 财政年份:2013
- 资助金额:
$ 56.98万 - 项目类别:
Standard Grant
French-Japanese Collaboration to publish an Introduction to Modern Japanese Philosophy
法日合作出版《现代日本哲学导论》
- 批准号:
23520040 - 财政年份:2011
- 资助金额:
$ 56.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSF-ANR Workshop: US-French Collaboration in Computational Neuroscience
NSF-ANR 研讨会:美法计算神经科学合作
- 批准号:
1201893 - 财政年份:2011
- 资助金额:
$ 56.98万 - 项目类别:
Standard Grant














{{item.name}}会员




