MRI: Development of Heterogeneous Cluster for Cyber-Physical System Hybrid Analytics
MRI:用于信息物理系统混合分析的异构集群的开发
基本信息
- 批准号:1531270
- 负责人:
- 金额:$ 18.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed instrument provides a foundation for new research activities enhancing existing research efforts, and fuels new collaboration within and the beyond institution. It comprise a uniquely capable high performance computing resource in the state and in the region. The heterogeneous cluster will be leveraged to yield superior modeling and understanding of seismic events, improve neuro-image analysis capabilities, enhance cyber-security tools, and inspire new vehicle crash-reconstruction methodologies. The educational activities augment the offerings of the institution and provide a template for development of a curriculum to prepare individuals for careers in the field of heterogeneous computing. Further, access to the cluster and the analytic tools developed for it fortify theoretic and applied courses, allowing students to approach and study real-world problems of a larger scale.This project builds a novel computational resource in the form of a heterogeneous cluster (CPU/MIC co-processor /FPGA), as a platform for research and innovation spanning several lines of inquiry across multitude fields in science and engineering. Specifically, this experimental hybrid cluster aims to service and advance research in emerging cyber-physical systems that have diverse computational needs. This work addresses current computing problems that continue to grow in size and scope, and quickly exhaust the capabilities of traditional homogeneous architectures in terms of execution time and cost. While various computing platforms exist, including the traditional CPU, field programmable gate arrays (FPGAs), many integrated core (MIC) co-processors, and graphic processing units (GPUs), these problems often possess traits that would benefit from a distribution of work based on the algorithmic needs and the capabilities of the underlying hardware. Thus, this development combines traditional CPUs with FPGAs, MICs, and GPUs forming a heterogeneous architecture capable of delivering the next advance in computational performance. The instrument allows investigators to address larger and more complex problems through computer simulation and analysis spanning the areas of cyber-physical system security, seismic modeling, neuroinformatics, crash reconstruction, and chemical reaction modeling. CPUs excel at complex multi-threaded applications with significant numbers of control (branch) instructions; MICs excel at problems with high spatial locality and that fit the SIMD mold; and FPGAs provide a blank canvas that can be configured to best fit the needs of a particular problem. Current hard problems require the strengths of each of these types of devices and this instrument provides a platform to solve such problems and to research how best to use the proposed heterogeneous platform. These results will advance the theoretical understanding of these processes. The heterogeneous cluster will expand understanding in the areas of the design of future heterogeneous clusters and interconnect architecture, in unified programming platforms and languages, and in workload division among diverse computational elements. Finally, the heterogeneous cluster will support advances in the science of Honeynets for security analysis, the implementation of bump-in-the-wire cyber-security monitoring tools, and advanced security vulnerability discovery.
拟议的文书为新的研究活动提供了基础,加强了现有的研究工作,并推动了机构内外的新合作。它包括在该州和该地区唯一有能力的高性能计算资源。 异构集群将被用来产生对地震事件的上级建模和理解,提高神经图像分析能力,增强网络安全工具,并激发新的车辆碰撞重建方法。教育活动增加了该机构的产品,并提供了一个模板的课程开发,以准备个人在异构计算领域的职业生涯。此外,通过使用集群及其分析工具,可以强化理论和应用课程,使学生能够更大规模地接近和研究现实世界的问题。本项目以异构集群(CPU/MIC协处理器/FPGA)的形式构建了一种新型计算资源,作为跨越科学和工程领域多条研究线的研究和创新平台。具体来说,这个实验性的混合集群旨在服务和推进具有不同计算需求的新兴网络物理系统的研究。这项工作解决了当前的计算问题,这些问题在规模和范围上不断增长,并在执行时间和成本方面迅速耗尽了传统同构架构的能力。虽然存在各种计算平台,包括传统的CPU、现场可编程门阵列(FPGA)、许多集成核心(MIC)协处理器和图形处理单元(GPU),但这些问题通常具有基于算法需求和底层硬件能力的工作分配的特点。因此,该开发将传统CPU与FPGA、MIC和GPU相结合,形成了一种能够在计算性能方面实现下一个进步的异构架构。该仪器允许调查人员通过计算机模拟和分析解决更大,更复杂的问题,涵盖网络物理系统安全,地震建模,神经信息学,碰撞重建和化学反应建模等领域。CPU擅长于具有大量控制(分支)指令的复杂多线程应用; MIC擅长于具有高空间局部性且符合SIMD模型的问题; FPGA提供了一个空白画布,可以进行配置以最好地满足特定问题的需求。目前的困难问题需要这些类型的设备的优势,这种仪器提供了一个平台来解决这些问题,并研究如何最好地使用所提出的异构平台。这些结果将推进这些过程的理论理解。异构集群将扩大在未来的异构集群和互连架构的设计领域的理解,在统一的编程平台和语言,并在不同的计算元素之间的工作负载分工。最后,异构集群将支持Honeynets科学的进步,用于安全分析,网络安全监控工具的实施,以及高级安全漏洞发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Hale其他文献
Processing MWEs: Neurocognitive Bases of Verbal MWEs and Lexical Cohesiveness within MWEs
处理 MWE:言语 MWE 的神经认知基础和 MWE 中的词汇衔接性
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Shohini Bhattasali;Murielle Fabre;John Hale - 通讯作者:
John Hale
Text Genre and Training Data Size in Human-like Parsing
类人解析中的文本类型和训练数据大小
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
John Hale;A. Kuncoro;Keith B. Hall;Chris Dyer;Jonathan Brennan - 通讯作者:
Jonathan Brennan
Modeling Incremental Language Comprehension in the Brain with Combinatory Categorial Grammar
用组合范畴语法对大脑中的渐进语言理解进行建模
- DOI:
10.18653/v1/2021.cmcl-1.3 - 发表时间:
2021 - 期刊:
- 影响因子:5.3
- 作者:
Miloš Stanojević;Shohini Bhattasali;Donald Dunagan;Luca Campanelli;Mark Steedman;Jonathan Brennan;John Hale - 通讯作者:
John Hale
Modeling fMRI time courses with linguistic structure at various grain sizes
使用不同粒度的语言结构对 fMRI 时间过程进行建模
- DOI:
10.3115/v1/w15-1110 - 发表时间:
2015 - 期刊:
- 影响因子:3.6
- 作者:
John Hale;David Lutz;W. Luh;Jonathan Brennan - 通讯作者:
Jonathan Brennan
The Shifting Sands of Security Management
- DOI:
10.1007/s10922-005-6261-5 - 发表时间:
2005-09-01 - 期刊:
- 影响因子:3.900
- 作者:
Paul Brusil;John Hale - 通讯作者:
John Hale
John Hale的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Hale', 18)}}的其他基金
US-French Collaboration: Collaborative Research: Neuro-Computational Models of Natural Language
美法合作:合作研究:自然语言的神经计算模型
- 批准号:
1903783 - 财政年份:2018
- 资助金额:
$ 18.07万 - 项目类别:
Continuing Grant
US-French Collaboration: Collaborative Research: Neuro-Computational Models of Natural Language
美法合作:合作研究:自然语言的神经计算模型
- 批准号:
1607441 - 财政年份:2016
- 资助金额:
$ 18.07万 - 项目类别:
Continuing Grant
TWC: Small: Scalable Hybrid Attack Graph Modeling and Analysis
TWC:小型:可扩展的混合攻击图建模和分析
- 批准号:
1524940 - 财政年份:2015
- 资助金额:
$ 18.07万 - 项目类别:
Standard Grant
CAREER: Automaton Theories of Human Sentence Comprehension
职业:人类句子理解的自动机理论
- 批准号:
0741666 - 财政年份:2008
- 资助金额:
$ 18.07万 - 项目类别:
Continuing Grant
CT-ISG: Compound Exposure Analysis: Security Metrics and Applications
CT-ISG:化合物暴露分析:安全指标和应用
- 批准号:
0524740 - 财政年份:2005
- 资助金额:
$ 18.07万 - 项目类别:
Standard Grant
CAREER: Programmable Security for Distributed Systems and Databases
职业:分布式系统和数据库的可编程安全性
- 批准号:
9984774 - 财政年份:2000
- 资助金额:
$ 18.07万 - 项目类别:
Continuing Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
GOALI: Frameworks: At-Scale Heterogeneous Data based Adaptive Development Platform for Machine-Learning Models for Material and Chemical Discovery
GOALI:框架:基于大规模异构数据的自适应开发平台,用于材料和化学发现的机器学习模型
- 批准号:
2311632 - 财政年份:2023
- 资助金额:
$ 18.07万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Instrument Development: Ångström-Scale Operando Spectroscopic Imaging at Heterogeneous Electrochemical Interfaces
合作研究:RUI:仪器开发:异质电化学界面的埃级操作光谱成像
- 批准号:
2304955 - 财政年份:2023
- 资助金额:
$ 18.07万 - 项目类别:
Standard Grant
Development of 1-chip LiDAR using 3D heterogeneous integration technology
利用3D异构集成技术开发1芯片LiDAR
- 批准号:
23H01472 - 财政年份:2023
- 资助金额:
$ 18.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: RUI: Instrument Development: Ångström-Scale Operando Spectroscopic Imaging at Heterogeneous Electrochemical Interfaces
合作研究:RUI:仪器开发:异质电化学界面的埃级操作光谱成像
- 批准号:
2304956 - 财政年份:2023
- 资助金额:
$ 18.07万 - 项目类别:
Standard Grant
Development and evaluation of equating methods for heterogeneous test scores
异质测试分数等值方法的开发和评估
- 批准号:
22K18641 - 财政年份:2022
- 资助金额:
$ 18.07万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
MRI: Development of Heterogeneous Edge Computing Platform for Real-Time Scientific Machine Learning
MRI:开发用于实时科学机器学习的异构边缘计算平台
- 批准号:
2215789 - 财政年份:2022
- 资助金额:
$ 18.07万 - 项目类别:
Standard Grant
Heterogeneous causal effects estimation in the field of behavioral economics:applications and method development
行为经济学领域的异质因果效应估计:应用和方法开发
- 批准号:
19KK0322 - 财政年份:2022
- 资助金额:
$ 18.07万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
CAREER: Development and Application of First-Principles Dielectric Embedding Many-Body Perturbation Theory for Heterogeneous Interfaces
职业:异质界面第一性原理电介质嵌入多体摄动理论的发展与应用
- 批准号:
2044552 - 财政年份:2021
- 资助金额:
$ 18.07万 - 项目类别:
Continuing Grant
Development of a methodology of analyzing molecular association processes in heterogeneous environments
开发异质环境中分子关联过程分析方法
- 批准号:
21K14589 - 财政年份:2021
- 资助金额:
$ 18.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of Heterogeneous Production Technology for Useful Natural Compounds from Difficult-to-Cultivate Microorganisms by Semi-Artificial Gene Clusters
利用半人工基因簇开发难培养微生物异质生产有用天然化合物的技术
- 批准号:
21K14798 - 财政年份:2021
- 资助金额:
$ 18.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists