Molecular Understanding and Design of Physically-linked Double Network Hydrogels

物理连接双网络水凝胶的分子理解和设计

基本信息

  • 批准号:
    1607475
  • 负责人:
  • 金额:
    $ 34.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARY:While polymer hydrogels as soft-and-wet materials have a wide range of applications for wastewater treatment, tissue engineering, medication delivery, and in the food industry, most hydrogels are mechanically weak which greatly limits their uses. Double network (DN) hydrogels, consisting of two contrasting and interpenetrating polymer networks, are considered as perhaps the toughest soft materials. Current knowledge of DN gels stemming from synthesis methods to toughening mechanisms comes mainly from chemically crosslinked DN gels, but these lack in self-recovery and self-healing properties. Differently from chemically crosslinked DN gels, the proposed work attempts to develop a new class of physically-based DN hydrogels with integrated superior mechanical, self-healing, self-recovery, and mechanically-induced optical properties. Systematic exploration of both chemically- and physically-linked DN gels will enable a better fundamental understanding of structure-property relationships and a better design of next-generation tough hydrogels with other desirable properties. New knowledge and techniques derived from this project may also lead to engineering applications such as robust artificial tissues, self-healing materials, smart stress-responsive robots, and damage-control sensors. The project will provide research opportunities to students at all levels, including underrepresented students, and help develop textbook knowledge and hands-on skills in polymer physics, materials chemistry, molecular simulations, and engineering design. The project will also integrate broader educational aspects via curriculum development, summer internships, and local outreach activities.TECHNICAL SUMMARY:The main objective of this project is to develop new physically-linked double-network (DN) hydrogels with three integrated properties of highly mechanical strength, self-healing properties, and mechanical-induced luminescence. By studying three types of physically-linked DN gels with and without different crosslinkers, the PI's group expects to reveal some fundamental principles about the intrinsic structure-property relationships amongst structural network topologies, functional interactions between and within two networks, and structural dependence on toughening, self-healing, and energy-dissipation mechanisms. To this end three tasks will be explored: The first task is to study the functional role of the first and second networks on mechanical properties of the physically-based DN gels and to understand how different networks and their interactions affect observable mechanical properties. The second task centers on the study of the self-recovery and self-healing properties and mechanisms of the DN gels while still retaining good mechanical properties. In parallel to the experimental tasks, computational components will include the study of structure, dynamics, and interactions between the two networks and crosslinkers. Moreover, a theoretical model will be developed to describe the dependence of networks on mechanical, self-recovery/healing properties, and energy dissipation. Combination and comparison of the computational and experimental results will help to establish a relationship between the macroscopic performance of the physically-linked DN gels and the nanoscopic network interactions at different time-scales and length-scales, eventually aiming to develop a set of rules for rational design of new tough gels.
非技术总结:聚合物水凝胶作为一种软湿材料,在废水处理、组织工程、药物输送和食品工业中有着广泛的应用,但大多数水凝胶的机械性能较弱,这极大地限制了它们的使用。双网(DN)水凝胶,由两个对比和互穿的聚合物网络组成,被认为是最坚韧的软材料。目前对DN凝胶从合成方法到增韧机理的认识主要来自于化学交联DN凝胶,但缺乏自恢复和自修复的特性。与化学交联的DN凝胶不同,这项工作试图开发一种新型的基于物理的DN水凝胶,它具有优异的机械、自修复、自恢复和机械诱导光学性质。系统地探索化学和物理连接的DN凝胶将有助于更好地理解结构-性能关系,并更好地设计具有其他理想性能的下一代坚韧水凝胶。从该项目中获得的新知识和技术也可能导致工程应用,如坚固的人造组织,自我修复材料,智能应力响应机器人和损伤控制传感器。该项目将为各个层次的学生提供研究机会,包括代表性不足的学生,并帮助发展教科书知识和实践技能,包括聚合物物理、材料化学、分子模拟和工程设计。该项目还将通过课程开发、暑期实习和当地推广活动,整合更广泛的教育方面。技术概述:本项目的主要目标是开发具有高机械强度、自修复性能和机械致发光三种综合性能的新型物理连接双网(DN)水凝胶。通过研究三种物理连接的DN凝胶,有或没有不同的交联剂,PI的小组希望揭示一些基本原理,关于结构网络拓扑之间固有的结构-性质关系,两个网络之间和内部的功能相互作用,以及结构对增韧,自愈和能量耗散机制的依赖。为此,将探索三个任务:第一项任务是研究第一和第二网络对基于物理的DN凝胶的力学性能的功能作用,并了解不同的网络及其相互作用如何影响可观察的力学性能。第二项任务是在保持良好力学性能的同时,研究DN凝胶的自恢复和自修复性能及其机制。与实验任务并行,计算组件将包括结构、动力学和两个网络和交联剂之间的相互作用的研究。此外,将开发一个理论模型来描述网络对机械,自我恢复/愈合特性和能量耗散的依赖。将计算结果与实验结果结合比较,有助于建立物理连接的DN凝胶的宏观性能与不同时间尺度和长度尺度下纳米级网络相互作用之间的关系,最终为新型韧性凝胶的合理设计制定一套规则。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jie Zheng其他文献

Editorial: Computational data-driven design and modeling of biomolecules and biomimetics.
社论:计算数据驱动的生物分子和仿生学设计和建模。
  • DOI:
    10.1016/j.bpc.2022.106877
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Jie Zheng;Haspel Nurit;Liqun Zhang;T. Wei;Q. Shao
  • 通讯作者:
    Q. Shao
Branched NaYF4:Yb, Er Up-Conversion Phosphors with Luminescent Properties for Anti-Counterfeiting Application
用于防伪应用的具有发光特性的支化NaYF4:Yb、Er上转换荧光粉
  • DOI:
    10.1166/sam.2017.3252
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Haihu Tan;Shaowen Xie;Jianxiong Xu;Na Li;Changfan Zhang;Lijian Xu;Jie Zheng
  • 通讯作者:
    Jie Zheng
Actual Microcosmic Trace of Mantle Fluid in Deep Geological Process: Experimental Evidence with Petrography, SEM-EDS and EPMA
深层地质过程中地幔流体的实际微观痕迹:岩相学、SEM-EDS 和 EPMA 的实验证据
Influences of Flow Parameters on Pressure Drop in a Patient Specific Right Coronary Artery with Two Stenoses
流量参数对患者特定右冠状动脉两处狭窄压降的影响
  • DOI:
    10.1007/978-3-319-62392-4_5
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Biyue Liu;Jie Zheng;R. Bach;D. Tang
  • 通讯作者:
    D. Tang
Single-Session Magnetic Resonance Coronary Angiography and Myocardial Perfusion Imaging Using the New Blood Pool Compound B-22956 (Gadocoletic Acid): Initial Experience in a Porcine Model of Coronary Artery Disease
使用新血池化合物 B-22956(钆胆酸)进行单次磁共振冠状动脉造影和心肌灌注成像:猪冠状动脉疾病模型的初步经验
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Jie Zheng;Debiao Li
  • 通讯作者:
    Debiao Li

Jie Zheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jie Zheng', 18)}}的其他基金

Mechanistic Design and Understanding of Fully Polymeric Antifreezing and Tough Hydrogels
全聚合防冻剂和坚韧水凝胶的机理设计和理解
  • 批准号:
    2311985
  • 财政年份:
    2023
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
Rational Design and Fundamental Understanding of Multimodal Amyloid Probes
多模式淀粉样蛋白探针的合理设计和基本理解
  • 批准号:
    2107619
  • 财政年份:
    2021
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
MRI: Acquisition of A High-sensitivity Electrospray Ionization Mass Spectrometer for Research and Education at the University of Texas at Dallas
MRI:德克萨斯大学达拉斯分校购买高灵敏度电喷雾电离质谱仪用于研究和教育
  • 批准号:
    2018188
  • 财政年份:
    2020
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
Combinatorial Design and Structure-Property Relationships of Antifouling Materials
防污材料的组合设计及其结构性能关系
  • 批准号:
    1806138
  • 财政年份:
    2018
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Continuing Grant
Design of Force-Sensitive Hydrogels for Adhesives and Strain Sensors
用于粘合剂和应变传感器的力敏水凝胶的设计
  • 批准号:
    1825122
  • 财政年份:
    2018
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
UNS: Design of Self-Assembling Peptides and their Conjugates as Amyloid Inhibitors
UNS:作为淀粉样蛋白抑制剂的自组装肽及其缀合物的设计
  • 批准号:
    1510099
  • 财政年份:
    2015
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
Molecular Design and Structural Basis of Peptide Inhibitors against Amyloid-beta Aggregation
β-淀粉样蛋白聚集肽抑制剂的分子设计和结构基础
  • 批准号:
    1158447
  • 财政年份:
    2012
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
CAREER: Computational studies of the structure and biological activity of amyloid forming peptides
职业:淀粉样蛋白形成肽的结构和生物活性的计算研究
  • 批准号:
    0952624
  • 财政年份:
    2010
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Continuing Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Understanding Molecular Interactions and Processability for the Design and Manufacture of Ultrafine Electrospun Polymer Fibers
职业:了解超细静电纺聚合物纤维设计和制造的分子相互作用和加工性能
  • 批准号:
    2045465
  • 财政年份:
    2021
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
Molecular design and fundamental understanding of Janus Mixed Matrix Membranes with precisely controlled morphology and transport properties
Janus 混合基质膜的分子设计和基本理解,具有精确控制的形态和传输特性
  • 批准号:
    2005282
  • 财政年份:
    2020
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
Understanding of molecular design of laser dyes for the applications of organic semiconductor lasers
了解用于有机半导体激光器应用的激光染料的分子设计
  • 批准号:
    20K21227
  • 财政年份:
    2020
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Breaking the armour of antimicrobial resistance: Rational design of antimicrobial peptides based on molecular-level understanding of their mechanisms
打破抗菌素耐药性的铠甲:基于分子水平对其机制的理解合理设计抗菌肽
  • 批准号:
    1953149
  • 财政年份:
    2017
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Studentship
CAREER: Molecular Understanding and Catalyst Design for the Direct Synthesis of H2O2
职业:直接合成 H2O2 的分子理解和催化剂设计
  • 批准号:
    1553137
  • 财政年份:
    2016
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
Understanding the Design and Conduction of Materials for Organic Electronics at the Molecular Level
在分子水平上了解有机电子材料的设计和传导
  • 批准号:
    1206202
  • 财政年份:
    2012
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Continuing Grant
Design of high efficient catalyst systems based on the understanding of reaction mechanisms at a molecular level
基于对分子水平反应机理的理解的高效催化剂体系的设计
  • 批准号:
    24750117
  • 财政年份:
    2012
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Understanding the molecular basis of virulence in Brachyspira hyodysenteriae to improve vaccine design
了解猪痢疾短螺旋体毒力的分子基础以改进疫苗设计
  • 批准号:
    LP0561961
  • 财政年份:
    2005
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Linkage Projects
Understanding the mechanism of metal adsorption on polysaccharides possesing suparamolecular structure and molecular design of separation materials
了解超分子结构多糖的金属吸附机理和分离材料的分子设计
  • 批准号:
    16560661
  • 财政年份:
    2004
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
US-Germany Cooperative Research: Understanding Molecular Electronics from Spectroscopy - A Step Towards Rational Design
美德合作研究:从光谱学中了解分子电子学——迈向理性设计的一步
  • 批准号:
    0340669
  • 财政年份:
    2004
  • 资助金额:
    $ 34.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了