Modeling of Metal Organic Materials (MOMs): Force Field Innovations and Applications with Impact
金属有机材料 (MOM) 建模:具有影响力的力场创新和应用
基本信息
- 批准号:1607989
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-15 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThe Divisions of Materials Research and Chemistry fund this award jointly. The award supports computational research and education on the simulation and design of next generation metal organic materials. This is an important class of solids, comprising upwards of 20,000 members, many of which have demonstrated porosity, i.e. the ability to selectively absorb molecules from their environment. This project will lead to the design of superior porous materials using a combination of computational modeling and experimental efforts. Specific targets include materials for energy and environmental applications with a focus on the capture, separation, and storage of gases like hydrocarbons, nitrogen, hydrogen, and on the capture of carbon dioxide, and nitrogen and sulfur oxides. Metal organic materials are promising candidates for such applications, which can have an impact on the nation's energy and environmental future. Understanding what essential features are requisite for producing technologically effective materials is a critical question. The interplay between the theory group and the experimental collaborators will lead to progress in understanding what design features, e.g. chemical composition and constituent arrangements, will in turn lead to commercially viable materials.The theoretical investigations will be carried out cooperatively with leading experimental groups performing cutting-edge experiments, and will include undergraduate and graduate student researchers. The developed codes and algorithms will be shared with the scientific community, and will be implemented in existing simulation codes with wide distribution. A database that catalogs the group's simulation efforts will also be shared with the community facilitating the avoidance of replication of effort and the reporting of failures.TECHNICAL SUMMARYThe Divisions of Materials Research and Chemistry fund this award jointly. The award supports computational research and education on the simulation and design of next generation metal organic materials. A promising avenue of the research is the construction of metal organic materials, which are an important class of solids that require development. There already exist more than 20,000 of these substances, many of which have demonstrated porosity, i.e. the ability to selectively sorb molecules from their environment. Questions to be addressed by this project are: i) how do you find the appropriate porous material for the right application, and ii) can one model the pertinent interactions effectively in order to provide microscopic explanations of the material's properties? The researcher plans to directly pursue this goal by creating and exploiting synergy between molecular modeling carried out in his group and domestic and international experimental collaborations. In particular, the design and application of next generation molecular force fields will be pursued. Specific targets include materials for energy and environmental applications with a focus on the capture, separation, and storage of gases like hydrocarbons, nitrogen, hydrogen, and on the capture of carbon dioxide, and nitrogen and sulfur oxides. Metal organic materials are very promising candidates for such applications, which can have an impact on the nation's energy and environmental future.The theoretical investigations will be carried out cooperatively with leading experimental groups performing cutting-edge experiments, and will include undergraduate and graduate student researchers. The developed codes and algorithms will be shared with the scientific community, and will be implemented in existing simulation codes with wide distribution. A database that catalogs the group's simulation efforts will also be shared with the community facilitating the avoidance of replication of effort and the reporting of failures.
非技术总结材料研究和化学部门共同资助这个奖项。该奖项支持下一代金属有机材料模拟和设计的计算研究和教育。这是一类重要的固体,包括超过20,000个成员,其中许多已经证明了多孔性,即从其环境中选择性吸收分子的能力。这个项目将导致上级多孔材料的设计使用的计算建模和实验的努力相结合。具体目标包括用于能源和环境应用的材料,重点是捕获,分离和储存碳氢化合物,氮气,氢气等气体,以及捕获二氧化碳,氮氧化物和硫氧化物。金属有机材料是这些应用的有希望的候选者,这可能对国家的能源和环境未来产生影响。了解生产技术上有效的材料所必需的基本特征是一个关键问题。理论小组和实验合作者之间的相互作用将导致理解什么设计特征,例如化学成分和成分排列,将反过来导致商业上可行的材料的进展。理论研究将与领先的实验小组合作进行尖端实验,并将包括本科生和研究生研究人员。开发的代码和算法将与科学界共享,并将在广泛分布的现有仿真代码中实现。一个数据库,该集团的模拟工作目录也将与社区共享,促进避免重复的努力和失败的报告。技术总结材料研究和化学部门共同资助这个奖项。该奖项支持下一代金属有机材料模拟和设计的计算研究和教育。 研究的一个有前途的途径是金属有机材料的构建,这是一类重要的需要开发的固体。目前已经存在超过20,000种这样的物质,其中许多已经证明具有多孔性,即能够从其环境中选择性地吸附分子。该项目要解决的问题是:i)如何找到合适的多孔材料用于正确的应用,以及ii)能否有效地模拟相关的相互作用,以提供材料特性的微观解释?研究人员计划通过创建和利用其团队中进行的分子建模与国内和国际实验合作之间的协同作用来直接实现这一目标。特别是,下一代分子力场的设计和应用将继续进行。具体目标包括用于能源和环境应用的材料,重点是捕获,分离和储存碳氢化合物,氮气,氢气等气体,以及捕获二氧化碳,氮氧化物和硫氧化物。金属有机材料是非常有希望的应用候选者,这可能会对国家的能源和环境的未来产生影响。理论研究将与进行尖端实验的领先实验小组合作,将包括本科生和研究生研究人员。开发的代码和算法将与科学界共享,并将在广泛分布的现有仿真代码中实现。还将与社区共享一个记录该小组模拟工作的数据库,以避免重复工作和报告失败。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Space其他文献
An atomically detailed description of metal–dielectric interfaces: The crossover from surface to bulk conducting properties of Ag–Xe
金属-电介质界面的原子详细描述:Ag-Xe 从表面到体导电特性的交叉
- DOI:
10.1063/1.481739 - 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Vaishali Shah;H. F. Bowen;Brian Space - 通讯作者:
Brian Space
Long time scale molecular dynamics subspace integration method applied to anharmonic crystals and glasses
适用于非简谐晶体和玻璃的长时标分子动力学子空间积分方法
- DOI:
10.1063/1.465573 - 发表时间:
1993 - 期刊:
- 影响因子:4.4
- 作者:
Brian Space;H. Rabitz;A. Askar - 通讯作者:
A. Askar
Vibrationally resolved electronic autoionization of core–hole resonances
核孔共振的振动解析电子自电离
- DOI:
10.1063/1.454838 - 发表时间:
1988 - 期刊:
- 影响因子:4.4
- 作者:
E. Poliakoff;L. Kelly;L. Duffy;Brian Space;P. Roy;S. Southworth;M. G. White - 通讯作者:
M. G. White
Next-Generation Accurate, Transferable, and Polarizable Potentials for Material Simulations.
下一代精确、可转移和可极化的材料模拟潜力。
- DOI:
10.1021/acs.jctc.0c00837 - 发表时间:
2020 - 期刊:
- 影响因子:5.5
- 作者:
Adam Hogan;Brian Space - 通讯作者:
Brian Space
Dynamics of trapping and localization of excess electrons in simple fluids
简单流体中多余电子的捕获和定位动力学
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Brian Space;D. Coker - 通讯作者:
D. Coker
Brian Space的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Space', 18)}}的其他基金
U.S.-Ireland R&D Partnership: AQUASORB: Predictive Modeling of Atmospheric Water Sorption
美国-爱尔兰 R
- 批准号:
2154882 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Molecularly Detailed Theories of Interfaces: Spectroscopy and Sorption
界面的分子详细理论:光谱学和吸附
- 批准号:
1152362 - 财政年份:2012
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Theoretical Investigations of the Spectroscopy and the Associated Structure and Dynamics of Liquids and Their Interfaces
液体及其界面的光谱学以及相关结构和动力学的理论研究
- 批准号:
0312834 - 财政年份:2003
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
CAREER: Theoretical Studies of Condensed Phase Conduction and Spectroscopic Processes
职业:凝聚相传导和光谱过程的理论研究
- 批准号:
0196052 - 财政年份:2000
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
CAREER: Theoretical Studies of Condensed Phase Conduction and Spectroscopic Processes
职业:凝聚相传导和光谱过程的理论研究
- 批准号:
9732945 - 财政年份:1998
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
相似国自然基金
Mn-Ni-Cu系all-d-metal Heusler合金的设计制备与磁性形状记忆效
应研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Metal-Na2WO4/SiO2催化甲烷氧化偶联的密度泛函理论研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Metal@ZnO-WO3复合纳米纤维微结构调控及对人呼气检测研究
- 批准号:61901293
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
d-metal Heusler磁相变合金NiMnTi(Co)的多相变路径弹热效应研究
- 批准号:51801225
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
狭叶香蒲重金属转运蛋白HMA(Heavy Metal ATPase)类基因的分离鉴定及功能分析
- 批准号:31701931
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Flexible metal-organic frameworks (MOFs) for hydrogen isotope separation: insights into smart recognition of gas molecules towards materials design
用于氢同位素分离的柔性金属有机框架(MOF):深入了解气体分子对材料设计的智能识别
- 批准号:
24K17650 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Metal-organic framework thin films for electrocatalysis: A combined ex situ and in situ investigation
用于电催化的金属有机骨架薄膜:异位和原位联合研究
- 批准号:
EP/Y002911/1 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Research Grant
Controllable quantum phases in two-dimensional metal-organic nanomaterials
二维金属有机纳米材料中的可控量子相
- 批准号:
DP240102006 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Discovery Projects
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Metal-Organic Framework-Based Gas Sensors: Structural Engineering for Early Diabetes Diagnosis and Monitoring (SEEDDM)
基于金属有机框架的气体传感器:早期糖尿病诊断和监测的结构工程 (SEEDDM)
- 批准号:
EP/Y002318/1 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Research Grant
High entropy metal organic frameworks for sustainable hydrogen production
用于可持续制氢的高熵金属有机框架
- 批准号:
DP240103230 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Discovery Projects
MRI: Track 1 Acquisition of Instrumentation for Marine Metal-Organic and Metalloproteomic Analyses
MRI:第 1 轨道采购海洋金属有机和金属蛋白质组分析仪器
- 批准号:
2320496 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
EAGER: Nuclear Transmutation in Metal Organic Frameworks through Neutron Absorption
EAGER:通过中子吸收实现金属有机框架中的核嬗变
- 批准号:
2324984 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Fabrication of metal-organic soft materials based on quantitative analysis of hierarchical structures
基于分级结构定量分析的金属有机软材料制备
- 批准号:
22KJ1784 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for JSPS Fellows