US-Israel Research Proposal: Network Resonance: Revealing the Neuronal Mechanisms
美国-以色列研究提案:网络共振:揭示神经元机制
基本信息
- 批准号:1608077
- 负责人:
- 金额:$ 70万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High-level brain functions, such as motor and cognitive behavior, rely on the concerted activity of neurons in networks. Neuronal networks consist of a wide array of cells types, each having a distinct morphology and functionality. Neurons communicate among them through complex voltage signaling mechanisms called spikes, which may or may not exhibit regular behavior along time. Yet, from chaos rises structure: neuronal networks are able to exhibit periodic oscillations emerging from their collective spiking activity, and disruption of this activity may result in diseases of the nervous system. Prominent among these oscillations is the theta band (4-10 Hz) rhythm, which is believed to form a temporal framework for information processing and transmission. How these oscillations emerge is still an open question. Studies in reduced preparations show that the so-called principal cells exhibit a preference for theta-frequency subthreshold oscillatory activity (resonance) when they are forced with periodic inputs. This might suggest that the network theta oscillations are "inherited" from this resonance. However, we have recently found that in behaving animals, the resonance observed at the network level requires the interaction between single-neuron and circuit properties in ways that are more complex than previously thought. In this project, the investigators will study the mechanisms underlying network resonance using a two-pronged approach: The US team will carry out detailed computational modeling, and the Israel team will perform experiments with behaving mice. This research is expected to generate a framework for describing and understanding network resonance and to lay mechanistic foundations for understanding brain oscillations in general. Therefore, the results of this work are expected to have implications for cognitive and motor function in both health and disease. The central hypothesis of this project is that the resonant behavior of spiking neurons in the theta frequency band (4-10 Hz) can be generated locally in various areas of the brain, and crucially depends on the interplay of the intrinsic properties of the participating neurons and the network connectivity. The investigators will test this hypothesis in hippocampal areas CA1 and CA3 and in the neocortex, regions in which the theta rhythm is prominent. While resonance in single neurons has been studied for almost three decades, the effect of the subthreshold oscillatory properties of neurons on shaping the dynamics of oscillatory networks has only recently become the focus of increasing experimental and theoretical attention. One reason for the sub vs. suprathreshold gap in our understanding is the lack of a theoretical framework that could provide the basis for a systematic study, is described in terms of the biophysics of neuronal systems, and is grounded in experimental results. This research is aimed at filling this void. By combining biophysically constrained computational modeling and in vivo experiments using multi-site/multi-color optogenetic manipulations, the investigators will construct the various plausible scenarios linking the intrinsic oscillatory properties of neurons to circuits and test them experimentally. In this way, causal relations will be established by interrogating these neuronal circuits both theoretically and in practice. This will contribute to the understanding of the neuronal circuits that underlie the generation of rhythmic oscillations in the hippocampus and the neocortex, which have implications for cognition and motor behavior. In addition, this research will contribute to the development of a theory of resonance and to the understanding of the interplay of oscillatory networks. Furthermore, the innovative tools that will be used in this project will pave the way for the development of hybrid computational-in vivo experimental tools reminiscent of the use of the dynamic clamp in vitro. A companion project is being funded by the US-Israel Binational Science Foundation (BSF).
高级大脑功能,如运动和认知行为,依赖于网络中神经元的协调活动。 神经元网络由多种细胞类型组成,每种细胞类型具有不同的形态和功能。 神经元通过称为尖峰的复杂电压信号机制在它们之间进行通信,尖峰可能会或可能不会表现出沿着时间的规则行为。 然而,从混沌中产生结构:神经元网络能够表现出从其集体尖峰活动中出现的周期性振荡,这种活动的中断可能导致神经系统疾病。 这些振荡中最突出的是theta波段(4-10 Hz)节律,它被认为形成了信息处理和传输的时间框架。 这些振荡是如何出现的仍然是一个悬而未决的问题。 在减少准备工作的研究表明,所谓的主细胞表现出对θ频率阈下振荡活动(共振)的偏好,当他们被迫与周期性的输入。 这可能表明网络θ振荡是从这种共振中“继承”的。 然而,我们最近发现,在行为动物中,在网络水平上观察到的共振需要单个神经元和电路特性之间的相互作用,其方式比以前认为的更复杂。 在这个项目中,研究人员将使用双管齐下的方法来研究网络共振的机制:美国团队将进行详细的计算建模,以色列团队将对行为小鼠进行实验。 这项研究有望产生一个描述和理解网络共振的框架,并为理解一般的脑振荡奠定机制基础。 因此,这项工作的结果预计将对健康和疾病中的认知和运动功能产生影响。该项目的中心假设是,theta频带(4-10 Hz)中尖峰神经元的共振行为可以在大脑的各个区域局部产生,并且关键取决于参与神经元的内在属性和网络连接性的相互作用。 研究人员将在海马CA 1区和CA 3区以及新皮层(theta节律突出的区域)测试这一假设。 虽然单神经元中的共振已经研究了近三十年,但神经元的阈下振荡特性对振荡网络动力学的影响直到最近才成为越来越多的实验和理论关注的焦点。 在我们的理解中,阈下与阈上差距的一个原因是缺乏一个理论框架,该框架可以为系统研究提供基础,根据神经系统的生物物理学进行描述,并以实验结果为基础。 这项研究旨在填补这一空白。 通过将生物物理学约束的计算建模和使用多位点/多色光遗传学操作的体内实验相结合,研究人员将构建将神经元的固有振荡特性与电路联系起来的各种合理场景,并通过实验对其进行测试。 通过这种方式,因果关系将通过在理论上和实践中询问这些神经元回路来建立。 这将有助于理解海马体和新皮层中产生节律振荡的神经元回路,这对认知和运动行为有影响。 此外,这项研究将有助于共振理论的发展和振荡网络的相互作用的理解。 此外,将在该项目中使用的创新工具将为混合计算体内实验工具的开发铺平道路,让人想起在体外使用动态夹。 一个配套项目正在由美国-以色列两国科学基金会(BSF)资助。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spiking resonances in models with the same slow resonant and fast amplifying currents but different subthreshold dynamic properties
具有相同慢速谐振和快速放大电流但亚阈值动态特性不同的模型中的尖峰谐振
- DOI:10.1007/s10827-017-0661-9
- 发表时间:2017
- 期刊:
- 影响因子:1.2
- 作者:Rotstein, Horacio G.
- 通讯作者:Rotstein, Horacio G.
Resonance-Based Mechanisms of Generation of Relaxation Oscillations in Networks of Non-oscillatory Neurons
非振荡神经元网络中基于共振的弛豫振荡产生机制
- DOI:10.1007/978-3-030-25261-8_24
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:A. Bel;H. Rotstein
- 通讯作者:H. Rotstein
Parameter Estimation in the Age of Degeneracy and Unidentifiability
- DOI:10.3390/math10020170
- 发表时间:2022-01-01
- 期刊:
- 影响因子:2.4
- 作者:Lederman,Dylan;Patel,Raghav;Rotstein,Horacio G.
- 通讯作者:Rotstein,Horacio G.
Network Resonance: Impedance Interactions via a Frequency Response Alternating Map (FRAM)
网络谐振:通过频率响应交替图 (FRAM) 进行阻抗交互
- DOI:10.1137/18m1200518
- 发表时间:2019
- 期刊:
- 影响因子:2.1
- 作者:Leiser, Randolph J.;Rotstein, Horacio G.
- 通讯作者:Rotstein, Horacio G.
Asymmetrical voltage response in resonant neurons shaped by nonlinearities
由非线性形成的共振神经元的不对称电压响应
- DOI:10.1063/1.5110033
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Pena, R. F. O.;Lima, V.;Shimoura, R. O.;Ceballos, C. C.;Rotstein, H. G.;Roque, A. C.
- 通讯作者:Roque, A. C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Horacio Rotstein其他文献
Horacio Rotstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Horacio Rotstein', 18)}}的其他基金
Collaborative Research: Dynamic interactions of individual neurons in supporting hippocampal network oscillations during behavior
合作研究:行为过程中单个神经元的动态相互作用支持海马网络振荡
- 批准号:
2002863 - 财政年份:2020
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Workshop: Present and Future Theoretical Frameworks in Neuroscience
研讨会:神经科学当前和未来的理论框架
- 批准号:
1820631 - 财政年份:2018
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Mechanisms of frequency preference in neurons and networks: biophysics and dynamics
神经元和网络的频率偏好机制:生物物理学和动力学
- 批准号:
1313861 - 财政年份:2013
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Rhythmic oscillations in the entorhino-hippocampal system: biophysics and dynamics
内鼻海马系统的节律振荡:生物物理学和动力学
- 批准号:
0817241 - 财政年份:2008
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
相似海外基金
CRCNS US-Israel Research Proposal: Multiscale analysis of brain-wide neuromodulation
CRCNS 美国-以色列研究提案:全脑神经调节的多尺度分析
- 批准号:
2207891 - 财政年份:2022
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
CRCNS US-Israel Research Proposal: Computational Phenotyping of Decision Making in Adolescent Psychopathology
CRCNS 美国-以色列研究提案:青少年精神病理学决策的计算表型
- 批准号:
10461033 - 财政年份:2020
- 资助金额:
$ 70万 - 项目类别:
CRCNS US-Israel Research Proposal: Computational Phenotyping of Decision Making in Adolescent Psychopathology
CRCNS 美国-以色列研究提案:青少年精神病理学决策的计算表型
- 批准号:
10239260 - 财政年份:2020
- 资助金额:
$ 70万 - 项目类别:
CRCNS: US-France-Israel Research Proposal: A personalized approach to brain stimulation
CRCNS:美国-法国-以色列研究提案:个性化的大脑刺激方法
- 批准号:
10706955 - 财政年份:2020
- 资助金额:
$ 70万 - 项目类别:
CRCNS US-Israel Research Proposal: Computational Phenotyping of Decision Making in Adolescent Psychopathology
CRCNS 美国-以色列研究提案:青少年精神病理学决策的计算表型
- 批准号:
10663070 - 财政年份:2020
- 资助金额:
$ 70万 - 项目类别:
CRCNS: US-France-Israel Research Proposal: A personalized approach to brain stimulation
CRCNS:美国-法国-以色列研究提案:个性化的大脑刺激方法
- 批准号:
10268236 - 财政年份:2020
- 资助金额:
$ 70万 - 项目类别:
NSF-IOS-BSF: Collaborative Research US/Israel: Transcriptome and post-translational regulation of heat stress tolerance in pollen
NSF-IOS-BSF:美国/以色列合作研究:花粉热应激耐受性的转录组和翻译后调控
- 批准号:
1656774 - 财政年份:2017
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
CRCNS US-France-Israel-Research Proposal: Processing of Complex Sounds: Cortical Network Mechanisms and Computations
CRCNS 美国-法国-以色列研究提案:复杂声音的处理:皮质网络机制和计算
- 批准号:
1724421 - 财政年份:2017
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
US-Israel Collaboration: Collaborative Research: New Tools for Extracting Neuronal Phenotypes from a Volumetric Set of Cerebral Cortex Images
美国-以色列合作:合作研究:从大脑皮层体积图像中提取神经元表型的新工具
- 批准号:
1607189 - 财政年份:2016
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
US-Israel Collaboration: Collaborative Research: New Tools for Extracting Neuronal Phenotypes from a Volumetric Set of Cerebral Cortex Images
美国-以色列合作:合作研究:从大脑皮层体积图像中提取神经元表型的新工具
- 批准号:
1607800 - 财政年份:2016
- 资助金额:
$ 70万 - 项目类别:
Standard Grant