Collaborative Research: Dynamic interactions of individual neurons in supporting hippocampal network oscillations during behavior

合作研究:行为过程中单个神经元的动态相互作用支持海马网络振荡

基本信息

  • 批准号:
    2002863
  • 负责人:
  • 金额:
    $ 62.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Cognitive and motor behavior in the brain is controlled by networks of highly interconnected neurons. Neurons communicate via signals called spikes, which are generated by complex biological mechanisms. These mechanisms crucially depend on the subthreshold membrane potential activity, which is controlled by the complex interaction of ionic currents among other factors. Although the spiking patterns of the individual neurons are typically not regular, certain neuronal networks produce periodic oscillatory patterns. Important among them is the theta rhythm (4-10 Hz), which has been recorded in various brain areas by global activity measures, such as electroencephalography (EEG) or extracellular local field potentials (LFPs). Theta oscillations have been observed during motor activity and REM sleep, and are thought to play important roles in navigation, episodic memory and learning. Theta oscillations have also been observed at the subthreshold membrane potential level in brain slice preparations, and in behaving animals in the hippocampal CA1 area. However, how the oscillatory activity at the network level is linked to the biophysical properties of individual neurons remains largely unknown. In this project, the investigators will address this question using a combined experimental/theoretical approach. The Boston University team will perform experiments in behaving animals in CA1, and the NJIT team will carry out detailed computational modeling. This research is expected to generate a framework for describing and understanding how high-level neuronal oscillations depend on the oscillatory activity of individual neurons through complex network interactions. The PIs will also work to disseminate their imaging technology to the scientific community. This project will contribute to the cross-disciplinary training of students and postdoctoral trainees in both experimental and computational neuroscience. The central hypothesis of this project is that theta oscillations in the hippocampus are generated by resonant mechanisms involving the intrinsic properties of individual neurons, and circuit interactions that are tuned to amplify theta frequency inputs from the medial septum and possibly other external sources. We will address this hypothesis from an interdisciplinary perspective involving in vivo experiments, computational modeling, and dynamical systems analysis. We aim to understand the cellular and circuit mechanisms of hippocampal theta oscillations in vivo, and to create a theoretical framework to describe the biophysical and dynamic links between the oscillatory properties of individual neurons and network oscillations. The Boston University team will deploy a novel voltage imaging technique to measure subthreshold voltage dynamics and spiking activity from individual hippocampal neurons of defined cell types, including pyramidal cells and local interneurons (e.g. parvalbumim (PV)- and somatostatin (SOM)- positive ones) during behavioral states with varying levels of LFP theta oscillations. Additionally, to test the causal role of these interneurons in supporting theta oscillations, precision optogenetic activation and silencing will be used. The NJIT team will build biophysical models of the hippocampal network that include the intrinsic subthreshold oscillatory properties of the participating neurons and inputs from other areas (e.g., medial septum) to produce theta LFP oscillations. The results of the proposed research will provide mechanistic insights on the formation of hippocampal CA1 network oscillations with implications to learning, memory and other cognitive functions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大脑中的认知和运动行为是由高度互联的神经元网络控制的。神经元通过由复杂的生物机制产生的称为尖峰的信号进行通信。这些机制关键取决于阈下膜电位活动,这是由离子电流等因素的复杂相互作用控制。虽然单个神经元的尖峰模式通常是不规则的,但某些神经元网络会产生周期性的振荡模式。其中重要的是θ节律(4-10 Hz),其已经通过诸如脑电图(EEG)或细胞外局部场电位(LFP)的全局活动测量在各种脑区域中被记录。Theta振荡在运动活动和REM睡眠期间被观察到,并且被认为在导航、情景记忆和学习中起重要作用。θ振荡也被观察到在阈下膜电位水平的脑切片制剂,并在海马CA 1区的行为动物。然而,网络水平的振荡活动如何与单个神经元的生物物理特性联系在一起,在很大程度上仍然是未知的。在这个项目中,研究人员将使用实验/理论相结合的方法来解决这个问题。波士顿大学的团队将在CA 1中进行动物行为实验,NJIT团队将进行详细的计算建模。这项研究有望产生一个框架,用于描述和理解高水平神经元振荡如何通过复杂的网络相互作用依赖于单个神经元的振荡活动。PI还将努力向科学界传播其成像技术。该项目将有助于对实验和计算神经科学领域的学生和博士后学员进行跨学科培训。该项目的中心假设是,海马体中的θ振荡是由涉及单个神经元的固有特性的共振机制和电路相互作用产生的,这些电路相互作用被调谐以放大来自内侧隔和可能的其他外部来源的θ频率输入。我们将从涉及体内实验,计算建模和动力系统分析的跨学科角度来解决这个假设。我们的目标是了解海马theta振荡在体内的细胞和电路机制,并创建一个理论框架来描述个体神经元的振荡特性和网络振荡之间的生物物理和动态联系。波士顿大学的研究小组将部署一种新的电压成像技术来测量阈下电压动态和尖峰活动,从定义的细胞类型的单个海马神经元,包括锥体细胞和局部中间神经元(例如,parvalbumim(PV)-和生长抑素(SOM)-阳性的)在行为状态与不同水平的LFP θ振荡。此外,为了测试这些中间神经元在支持θ振荡中的因果作用,将使用精确的光遗传学激活和沉默。NJIT团队将建立海马网络的生物物理模型,其中包括参与神经元的固有阈下振荡特性和来自其他区域的输入(例如,内侧隔)以产生θ LFP振荡。拟议的研究结果将提供海马CA 1网络振荡的形成机制的见解与影响学习,记忆和其他认知functions.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Role of Theory and Modeling in Neuroscience
  • DOI:
    10.1523/jneurosci.1179-22.2022
  • 发表时间:
    2023-02-15
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Levenstein,Daniel;Alvarez,Veronica A.;Redish,A. David
  • 通讯作者:
    Redish,A. David
Modeling of single neurons: low-dimensional models
单个神经元建模:低维模型
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Chialva, Ulises;González Boscá, Vicente;Rotstein, Horacio G.
  • 通讯作者:
    Rotstein, Horacio G.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Horacio Rotstein其他文献

Horacio Rotstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Horacio Rotstein', 18)}}的其他基金

Workshop: Present and Future Theoretical Frameworks in Neuroscience
研讨会:神经科学当前和未来的理论框架
  • 批准号:
    1820631
  • 财政年份:
    2018
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
US-Israel Research Proposal: Network Resonance: Revealing the Neuronal Mechanisms
美国-以色列研究提案:网络共振:揭示神经元机制
  • 批准号:
    1608077
  • 财政年份:
    2016
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Mechanisms of frequency preference in neurons and networks: biophysics and dynamics
神经元和网络的频率偏好机制:生物物理学和动力学
  • 批准号:
    1313861
  • 财政年份:
    2013
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Rhythmic oscillations in the entorhino-hippocampal system: biophysics and dynamics
内鼻海马系统的节律振荡:生物物理学和动力学
  • 批准号:
    0817241
  • 财政年份:
    2008
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
  • 批准号:
    2342936
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
  • 批准号:
    2342937
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318851
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318854
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了