OP: A High-Throughput Quantum Photonic Source
OP:高通量量子光子源
基本信息
- 批准号:1608049
- 负责人:
- 金额:$ 26.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract title: A high-throughput quantum photonic source for generating non-classical lightAbstract:Non-technical description:The invention of lasers is one of the most important scientific and technological achievements in the history. The laser is already integrated into our daily life: Among their many applications, lasers are used in optical disk drives, laser printers, and barcode scanners; fiber-optic and free-space optical communication; laser surgery and skin treatments; cutting and welding materials; military and law enforcement devices for marking targets and measuring range and speed; and laser lighting displays in entertainment. The laser produces bright, coherent, and tightly-focused light beams which consist of lots of photons (individual constituents of light). When measuring the arrival times of the photons in a laser beam using a photo-dector, the photons arrive randomly. Researchers have discovered that if the arrival times of photons can be orchestrated, these photons could have novel applications in quantum computing and communications that are not possible by using conventional lasers. A light beam that consists of these orchestrated photons is called non-classical light. Scientists have demonstrated the existence of the non-classical light. Nonetheless, to date there exist no efficient methods to produce bright non-classical light. The major hurdle is that although the scientists can coordinate a handful photons, it is very challenging to coordinate a large number of photons in a batch.The project aims to research a quantum light source for generating bright non-classical light. Specifically, we will design a quantum light source, and develop a computational framework to control and to manipulate the photons generated by the light source. Once completed, this project will make possible a new type of quantum light sources such that the output light of the quantum light sources will consist of a large number of coordinated photons so that their arrival times at the photo-detector can be controlled. Such a new quantum light source will be important for practical applications in quantum information science. The capabilities for controlling quantum state of light are of paramount importance for modern society. The success of the project will represent important breakthroughs in quantum optical information processing, a field that has already broadly impacted modern technology and human life.Technical description:The capability of on-chip generation of a large flux of entangled quantum photonic states (antibunched or bunched entangled photons) is necessary to meet the growing demands of a broad range of next-generation scientific and technological applications. Among these are quantum optical information processing, such as quantum computing and quantum key distribution, and quantum (or ghost) imaging. In bunched states, the photons always arrive together at the photo-detector; while in the antibunched states, the photons never arrive together. A promising solid-state route to engineer the quantum photonic states is to use the cavity quantum electrodynamics (QED) systems that relies on the anharmonicity of the Jaynes-Cummings interaction. The PI has shown that the geometry currently employed in experiments - a single Jaynes-Cummings (JC) component sandwiched by two waveguides - have a fundamental tradeoff between high converting efficiency (from independent photons to entangled photons) and the quality of the quantum states (degree of entanglement), and is sensitive to dissipation. Furthermore, the short lifetime of a single JC component severely limits the efficient generation of the quantum photonic states. It is desirable to have high-throughput quantum light sources; however, direct scaling up the number of the cavity QED components would not work, as the photons generated from different cavity QED component would intervene with each other at the output to wash out the intra-state correlations. The goal of this proposal is to computationally research high-throughput quantum photonic sources that produce high-quality entangled quantum photonic states to push the generation of the quantum photonic states well beyond the state-of-the-art.
摘要标题:用于产生非经典光的高通量量子光子源摘要:非技术描述:激光的发明是历史上最重要的科学技术成就之一。激光已经融入我们的日常生活:在其众多应用中,激光用于光盘驱动器、激光打印机和条形码扫描仪;光纤和自由空间光通信;激光手术和皮肤治疗;切割和焊接材料;用于标记目标和测量距离和速度的军事和执法设备;以及娱乐中的激光照明显示器。激光产生明亮的、相干的和紧密聚焦的光束,它由大量的光子(光的单独成分)组成。当使用光电探测器测量激光中光子的到达时间时,光子随机到达。研究人员发现,如果光子的到达时间能够得到协调,这些光子可能会在量子计算和通信中有新的应用,这是传统激光无法实现的。由这些协调光子组成的光束被称为非经典光。科学家已经证明了非经典光的存在。然而,到目前为止,还没有有效的方法来产生明亮的非经典光。主要的障碍是,尽管科学家可以协调少数几个光子,但要协调一批大量的光子是非常有挑战性的。该项目旨在研究一种能够产生明亮的非经典光的量子光源。具体地说,我们将设计一个量子光源,并开发一个计算框架来控制和操纵光源产生的光子。一旦完成,这个项目将使一种新型的量子光源成为可能,这样量子光源的输出光将由大量的配位光子组成,从而可以控制它们到达光电探测器的时间。这种新型量子光源对量子信息科学的实际应用具有重要意义。控制光的量子态的能力对现代社会至关重要。该项目的成功将代表着量子光学信息处理的重要突破,该领域已经广泛影响到现代技术和人类生活。技术描述:在芯片上产生大量纠缠量子光子态(反聚束或聚束纠缠光子)的能力是满足广泛的下一代科学和技术应用日益增长的需求所必需的。其中包括量子光学信息处理,如量子计算和量子密钥分发,以及量子(或幽灵)成像。在聚束状态下,光子总是一起到达光电探测器;而在反聚束状态下,光子永远不会一起到达。利用Jaynes-Cummings相互作用的非谐性,利用腔量子电动力学(QED)系统来设计量子光子态是一种很有前途的固态方法。PI表明,目前实验中使用的几何结构--夹在两个波导中的单个Jaynes-Cummings(JC)分量--在高转换效率(从独立的光子到纠缠的光子)和量子态的质量(纠缠度)之间有一个基本的权衡,并且对耗散很敏感。此外,单个JC分量的短寿命严重限制了量子光子态的有效产生。人们希望有高通量的量子光源;然而,直接放大腔QED组件的数量将不起作用,因为从不同的腔QED组件产生的光子将在输出端相互干扰,以洗去态内关联。这一提议的目标是通过计算研究高通量量子光子源,以产生高质量的纠缠量子光子态,以推动量子光子态的产生远远超过最先进的水平。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jung-Tsung Shen其他文献
Paraganglioma of the urinary bladder with pelvic metastasis
- DOI:
10.1016/j.urols.2013.05.013 - 发表时间:
2014-09-01 - 期刊:
- 影响因子:
- 作者:
Jiun-Hung Geng;Shu-Pin Huang;Jung-Tsung Shen;Yi-Ting Chen - 通讯作者:
Yi-Ting Chen
PROTEIN KINASE C INHIBITOR PREVENTS APOPTOTIC AND FIBROTIC CHANGES IN RESPONSE TO PARTIAL URETERAL OBSTRUCTION
- DOI:
10.1016/s0022-5347(09)60664-9 - 发表时间:
2009-04-01 - 期刊:
- 影响因子:
- 作者:
Yungshun Juan;Shu-Mien Chuang;Wen-Jeng Wu;Kehmin Liu;Jung-Tsung Shen;Chun-Hsiung Huang - 通讯作者:
Chun-Hsiung Huang
Ancient schwannoma and myelolipoma coexist in an adrenal incidentaloma
- DOI:
10.1016/j.urols.2015.01.007 - 发表时间:
2015-06-01 - 期刊:
- 影响因子:
- 作者:
Kai-Fu Yang;Hsiang-Ying Lee;Wen-Jeng Wu;Yung-Shun Juan;Mei-Yu Jang;Hsun-Shuan Wang;Jung-Tsung Shen - 通讯作者:
Jung-Tsung Shen
Jung-Tsung Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jung-Tsung Shen', 18)}}的其他基金
RAISE: TAQS: Two-Photon Quantum Photonic Logic Gates Enabled by Photonic Bound States
RAISE:TAQS:光子束缚态启用的双光子量子光子逻辑门
- 批准号:
1838996 - 财政年份:2018
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
CAREER: Extraordinary Enhancement of Optical Nonlinearity in Subwavelength Metal-Nonlinear Dielectric Gratings
职业:亚波长金属非线性介质光栅光学非线性的非凡增强
- 批准号:
1254649 - 财政年份:2013
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
相似海外基金
QUantum communication Development with Increased Throughput for information Systems (QUDITS)
提高信息系统吞吐量的量子通信发展(QUDITS)
- 批准号:
10032280 - 财政年份:2022
- 资助金额:
$ 26.9万 - 项目类别:
Collaborative R&D
NSF Convergence Accelerator Track C: High-Throughput Proteomics Technology Based on Quantum Sensing
NSF融合加速器轨道C:基于量子传感的高通量蛋白质组学技术
- 批准号:
2040520 - 财政年份:2020
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
Development of quantum dots applicable to high-throughput analysis of chirality
开发适用于手性高通量分析的量子点
- 批准号:
18K04897 - 财政年份:2018
- 资助金额:
$ 26.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Quantum Diamond Sensors with Rapid Sample Transfer for High-Throughput Magnetic Bioassays
SBIR 第一阶段:具有快速样品传输功能的量子金刚石传感器,用于高通量磁性生物测定
- 批准号:
1746381 - 财政年份:2018
- 资助金额:
$ 26.9万 - 项目类别:
Standard Grant
Low noise, high-throughput, time-resolved single-photon sensor for quantum applications
适用于量子应用的低噪声、高通量、时间分辨单光子传感器
- 批准号:
103872 - 财政年份:2017
- 资助金额:
$ 26.9万 - 项目类别:
Collaborative R&D
Low noise, high-throughput, time-resolved single-photon sensor for quantum applications
适用于量子应用的低噪声、高通量、时间分辨单光子传感器
- 批准号:
EP/R020981/1 - 财政年份:2017
- 资助金额:
$ 26.9万 - 项目类别:
Research Grant
Development of a microliter-scale high-throughput screening system with quantum-dot for amyloid-beta aggregation inhibitors
开发用于淀粉样蛋白聚集抑制剂的微升级高通量量子点筛选系统
- 批准号:
25350974 - 财政年份:2013
- 资助金额:
$ 26.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High Throughput Nucleic Acid Detection Systems Based on Multiplexing Using Quantum Dots
基于量子点多重检测的高通量核酸检测系统
- 批准号:
369844-2008 - 财政年份:2008
- 资助金额:
$ 26.9万 - 项目类别:
University Undergraduate Student Research Awards
High throughput nucleic acid detection systems based on multiplexing using quantum dots
基于使用量子点的多重检测的高通量核酸检测系统
- 批准号:
336239-2006 - 财政年份:2007
- 资助金额:
$ 26.9万 - 项目类别:
Strategic Projects - Group
High throughput nucleic acid detection systems based on multiplexing using quantum dots
基于使用量子点的多重检测的高通量核酸检测系统
- 批准号:
336239-2006 - 财政年份:2006
- 资助金额:
$ 26.9万 - 项目类别:
Strategic Projects - Group