RAISE: TAQS: Two-Photon Quantum Photonic Logic Gates Enabled by Photonic Bound States
RAISE:TAQS:光子束缚态启用的双光子量子光子逻辑门
基本信息
- 批准号:1838996
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum information science exploits quantum mechanical phenomena such as superposition and entanglement to improve classical communication, computation, information processing, and precision measurement. Quantum technology is expected to play a decisive role in enhancing national security and bolstering further scientific discovery. In quantum information processing, single-quantum bit (qubit) operations are not sufficient to unlock all the computational power that is endowed by a collection of qubits. Hence it is necessary and in fact sufficient to add a two-qubit gate such as a controlled-phase gate to a finite set of single-qubit gates to achieve what no longer can be efficiently simulated on a classical computer. In optical quantum computation, photonic qubits are used as information carriers due to their low-noise, long coherence times, light-speed transmission and ease of manipulation at the single-qubit level using standard optical components. To date, only probabilistic two-qubit photonic logic gates based on linear optics and photon detectors have been demonstrated. The implementation, however, is associated with substantial resource overhead and demands stringent technological requirements which are still challenging today. This project addresses the fundamental challenges by developing a deterministic controlled-phase gate to realize the full potential of quantum computation. The educational and outreach activities will train the next-generation quantum scientists and engineers to accelerate the pace of quantum information science and applications. Technical Abstract:The goal of this work is to develop a new technological approach to a controlled-phase gate for two photonic qubits using an entirely novel approach based on the generation of photonic dimer states, a chiral nano-photonic waveguide, and a single dipole emitter. The tight optical confinement in the transverse direction in the nanophotonic waveguide allows one to place the dipole emitter at the chiral point and achieve strong coupling between the photon and the emitter such that the scattered photons couple efficiently to the forward but not the backward-propagating mode. The correlated photons form the photonic dimers, which are the bound states of photons and give rise to a non-trivial transmission pi phase shift. The validation of the controlled-phase gate will be achieved using a novel experimental design based on an integrated waveguide approach coupled with number-resolved photon detectors. The demonstration of the photonic dimer state and the corresponding 180-degree phase shift associated with the state with both photons interacting with the dipole emitter will be a major step forward in demonstrating the potential of photonic quantum computing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子信息科学利用量子力学现象,如叠加和纠缠,以改善经典通信,计算,信息处理和精密测量。量子技术有望在加强国家安全和支持进一步科学发现方面发挥决定性作用。在量子信息处理中,单量子比特(qubit)操作不足以解锁由一组量子比特赋予的所有计算能力。因此,有必要并且事实上足以将诸如受控相位门之类的双量子位门添加到有限的单量子位门集合中,以实现在经典计算机上不再能够有效模拟的功能。在光量子计算中,光子量子比特由于其低噪声、长相干时间、光速传输和易于使用标准光学组件在单量子比特水平上操作而被用作信息载体。到目前为止,只有基于线性光学和光子探测器的概率双量子比特光子逻辑门已经被证明。然而,该实施与大量资源开销相关,并且需要严格的技术要求,这些要求至今仍然具有挑战性。该项目通过开发确定性控制相位门来解决基本挑战,以实现量子计算的全部潜力。教育和推广活动将培养下一代量子科学家和工程师,以加快量子信息科学和应用的步伐。 技术摘要:这项工作的目标是开发一种新的技术方法来控制相位门的两个光子量子比特使用一种全新的方法的基础上产生的光子二聚体状态,手性纳米光子波导,和一个单一的偶极子发射器。在纳米光子波导中的横向方向上的紧密光学限制允许将偶极发射器放置在手性点处并且实现光子与发射器之间的强耦合,使得散射光子有效地耦合到前向传播模式而不是后向传播模式。相关光子形成光子二聚体,光子二聚体是光子的束缚态,并产生非平凡的透射π相移。控制相位门的验证将实现使用一种新的实验设计的基础上的集成波导的方法与数分辨光子探测器耦合。光子二聚体状态和相应的180度相移的演示与状态与两个光子与偶极子发射器相互作用将是一个重要的一步,在展示光子量子计算的潜力。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Photonic Fock state generation using superradiance
使用超辐射产生光子福克态
- DOI:10.1364/ol.468481
- 发表时间:2022
- 期刊:
- 影响因子:3.6
- 作者:Liu, Qihang;Shen, Jung-Tsung
- 通讯作者:Shen, Jung-Tsung
Proposal for chip-scale generation and verification of photonic dimers
光子二聚体芯片级生成和验证的提案
- DOI:10.1063/5.0073090
- 发表时间:2021
- 期刊:
- 影响因子:4
- 作者:Kim, Juhyeon;Mastropietro, Donato;Steel, Duncan;Shen, Jung-Tsung;Ku, Pei-Cheng
- 通讯作者:Ku, Pei-Cheng
Two-photon controlled-phase gates enabled by photonic dimers
- DOI:10.1103/physreva.103.052610
- 发表时间:2021-05-21
- 期刊:
- 影响因子:2.9
- 作者:Chen, Zihao;Zhou, Yao;Steel, Duncan
- 通讯作者:Steel, Duncan
Optically Controlled Spin Gate Using GaN Quantum Dots
- DOI:10.1021/acsphotonics.2c00083
- 发表时间:2022-04
- 期刊:
- 影响因子:7
- 作者:Juhyeon Kim;Zachary Croft;D. Steel;P. Ku
- 通讯作者:Juhyeon Kim;Zachary Croft;D. Steel;P. Ku
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jung-Tsung Shen其他文献
Paraganglioma of the urinary bladder with pelvic metastasis
- DOI:
10.1016/j.urols.2013.05.013 - 发表时间:
2014-09-01 - 期刊:
- 影响因子:
- 作者:
Jiun-Hung Geng;Shu-Pin Huang;Jung-Tsung Shen;Yi-Ting Chen - 通讯作者:
Yi-Ting Chen
PROTEIN KINASE C INHIBITOR PREVENTS APOPTOTIC AND FIBROTIC CHANGES IN RESPONSE TO PARTIAL URETERAL OBSTRUCTION
- DOI:
10.1016/s0022-5347(09)60664-9 - 发表时间:
2009-04-01 - 期刊:
- 影响因子:
- 作者:
Yungshun Juan;Shu-Mien Chuang;Wen-Jeng Wu;Kehmin Liu;Jung-Tsung Shen;Chun-Hsiung Huang - 通讯作者:
Chun-Hsiung Huang
Ancient schwannoma and myelolipoma coexist in an adrenal incidentaloma
- DOI:
10.1016/j.urols.2015.01.007 - 发表时间:
2015-06-01 - 期刊:
- 影响因子:
- 作者:
Kai-Fu Yang;Hsiang-Ying Lee;Wen-Jeng Wu;Yung-Shun Juan;Mei-Yu Jang;Hsun-Shuan Wang;Jung-Tsung Shen - 通讯作者:
Jung-Tsung Shen
Jung-Tsung Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jung-Tsung Shen', 18)}}的其他基金
OP: A High-Throughput Quantum Photonic Source
OP:高通量量子光子源
- 批准号:
1608049 - 财政年份:2016
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CAREER: Extraordinary Enhancement of Optical Nonlinearity in Subwavelength Metal-Nonlinear Dielectric Gratings
职业:亚波长金属非线性介质光栅光学非线性的非凡增强
- 批准号:
1254649 - 财政年份:2013
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似国自然基金
北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
- 批准号:31470312
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:
2326801 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
- 批准号:
2326758 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
- 批准号:
2326810 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
- 批准号:
2326838 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
- 批准号:
2326528 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
- 批准号:
2326748 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
- 批准号:
2326767 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant