Transition Metal Doping in Two-Dimensional, Atomically Thin Semiconductors

二维原子薄半导体中的过渡金属掺杂

基本信息

  • 批准号:
    1608171
  • 负责人:
  • 金额:
    $ 39.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Abstract:Non-Technical:Controlling electrical transport in semiconductors by impurity doping has enabled an entire generation of technology. As device length scales shrink, pushing the limits of silicon technology, new atomically thin semi-conducting materials such as two-dimensional transition metal dichalcogenides are emerging as a potential replacement to silicon. While doping control has been perfected for silicon technology over many decades, controlled synthesis and doping strategies for atomically thin transition metal dichalcogenides are still in their infancy. In this project, the investigators propose to demonstrate a stable doping strategy for such materials which involves substitution of the transition metal atom by an impurity metal. The investigators propose to show how both hole and electron doping is possible using such an approach. This work could enable controllable and stable doping of transition metal dichalcogenide nanosheets to tune their carrier type and density, thereby paving the way for next generation electronic and optoelectronic devices constructed from atomically-thin semiconductors. To integrate research and teaching, the investigators propose specially designed interactive learning modules (virtual labs) which will be integrated into the curriculum at the Rensselaer Polytechnic Institute. Outreach includes demonstrations of the interactive modules to students and teachers from local area high schools; this will help to popularize science and attract underrepresented groups to careers in science and engineering.Technical Description:There are very few reports of direct substitution (doping) of transition metal atoms in atomically-thin transition metal dichalcogenides. This is likely due to the fact that transition metal atoms are far more stable than chalcogens and hence much harder to replace. However initial results by the investigators indicate that large-area (in situ) transition metal doping for monolayer transition metal dichalcogenides is indeed possible during the chemical vapor deposition growth process. In this project, the investigators propose first-principles density functional theory calculations over a wide range of doping concentrations to understand how the semiconducting and optoelectronic properties of such materials are affected by transition metal doping. On the experimental side, the investigators propose to demonstrate that the doping can be systematically tuned over a wide range. Variable temperature electronic transport measurements, using a back gated field-effect transistor configuration will be performed to establish how the material's electronic properties are influenced by doping. Further, photoluminescence and differential reflectance spectroscopy over a wide range of temperatures and dopant concentrations will be carried out to understand how doping affects the optoelectronic properties of the material. The project will culminate in a technology demonstration featuring an atomically sharp p-n junction device. To accomplish the above tasks, the investigators have assembled an interdisciplinary team with complementary expertise. Collaboration between experimentalists and a theorist will enable the team to develop an in-depth understanding of the underlying physics and make rapid progress towards controllably and stably doping atomically-thin transition metal dichalcogenide materials.
翻译后摘要:非技术:控制杂质掺杂的半导体中的电输运,使整个一代的技术。随着器件长度尺度的缩小,推动了硅技术的极限,新的原子级薄的半导体材料,如二维过渡金属二硫属化物,正在成为硅的潜在替代品。虽然几十年来硅技术的掺杂控制已经完善,但原子级薄的过渡金属二硫属化物的受控合成和掺杂策略仍处于起步阶段。在这个项目中,研究人员建议为这种材料展示一种稳定的掺杂策略,包括用杂质金属取代过渡金属原子。研究人员建议使用这种方法来展示空穴和电子掺杂是如何可能的。这项工作可以实现过渡金属二硫属化物纳米片的可控和稳定掺杂,以调整其载流子类型和密度,从而为由原子薄半导体构建的下一代电子和光电器件铺平道路。为了整合研究和教学,研究人员提出了专门设计的互动学习模块(虚拟实验室),这些模块将被整合到伦斯勒理工学院的课程中。推广活动包括向当地高中的学生和教师演示互动模块;这将有助于普及科学,吸引代表性不足的群体从事科学和工程职业。技术说明:在原子薄的过渡金属二硫属化物中,过渡金属原子的直接取代(掺杂)的报道非常少。这可能是由于过渡金属原子比硫属元素稳定得多,因此更难取代。然而,研究人员的初步结果表明,在化学气相沉积生长过程中,单层过渡金属二硫属化物的大面积(原位)过渡金属掺杂确实是可能的。在这个项目中,研究人员提出了在广泛的掺杂浓度范围内的第一性原理密度泛函理论计算,以了解过渡金属掺杂如何影响这些材料的半导体和光电特性。在实验方面,研究人员建议证明掺杂可以在很大范围内进行系统调整。将使用背栅场效应晶体管配置进行变温电子输运测量,以确定掺杂如何影响材料的电子特性。此外,将在广泛的温度和掺杂剂浓度范围内进行光致发光和差分反射光谱,以了解掺杂如何影响材料的光电特性。该项目将最终在一个技术演示具有原子尖锐的p-n结器件。为完成上述任务,调查人员组建了一个具有互补专长的跨学科小组。实验学家和理论家之间的合作将使团队能够深入了解基础物理学,并在可控和稳定掺杂原子薄过渡金属二硫属化物材料方面取得快速进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nikhil Koratkar其他文献

Short period sinusoidal thermal modulation for quantitative identification of gas species
用于定量识别气体种类的短周期正弦热调制
  • DOI:
    10.1039/c9nr05863j
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Aijun Yang;Jifeng Chu;Weijuan Li;Dawei Wang;Xu Yang;Tiansong Lan;Xiaohua Wang;Mingzhe Rong;Nikhil Koratkar
  • 通讯作者:
    Nikhil Koratkar
Intraparticle alloying-plating reaction for high-performing lithium metal batteries with low volume expansion
用于具有低体积膨胀的高性能锂金属电池的颗粒内合金化 - 镀覆反应
  • DOI:
    10.1016/j.mattod.2025.03.012
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    22.000
  • 作者:
    Zidong Chen;Yiteng Luo;Dongsheng Yang;Yuhang Hu;Haorui Hou;Nikhil Koratkar;Guangmin Zhou;Wei Liu
  • 通讯作者:
    Wei Liu
Nano-silica electrolyte additive enables dendrite suppression in an anode-free sodium metal battery
  • DOI:
    10.1016/j.nanoen.2024.110010
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Reena A. Panchal;Joy Datta;Vrushali Varude;Kevin Bhimani;Varad Mahajani;Mithil Kamble;Apurva Anjan;Rohit M. Manoj;R. Helen Zha;Dibakar Datta;Nikhil Koratkar
  • 通讯作者:
    Nikhil Koratkar
Virtual Alternating Current Measurements Advance Semiconductor Gas Sensors’ Performance in the Internet of Things
虚拟交流测量提高了半导体气体传感器在物联网中的性能
  • DOI:
    10.1109/jiot.2021.3108799
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Dawei Wang;Jianbing Pan;Xianbo Huang;Jifeng Chu;Huan Yuan;Aijun Yang;Nikhil Koratkar;Xiaohua Wang;Mingzhe Rong
  • 通讯作者:
    Mingzhe Rong
Piezoelectricity in chalcogenide perovskites
硫族钙钛矿中的压电性
  • DOI:
    10.1038/s41467-024-50130-5
  • 发表时间:
    2024-07-09
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Sk Shamim Hasan Abir;Shyam Sharma;Prince Sharma;Surya Karla;Ganesh Balasubramanian;Johnson Samuel;Nikhil Koratkar
  • 通讯作者:
    Nikhil Koratkar

Nikhil Koratkar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nikhil Koratkar', 18)}}的其他基金

Collaborative Research: Fundamental Study of Niobium Tungsten Oxide Anodes for High-Performance Aqueous Batteries
合作研究:高性能水系电池用铌钨氧化物阳极的基础研究
  • 批准号:
    2126178
  • 财政年份:
    2021
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Standard Grant
Fundamental Study of Interaction of Ions Present in Water with Graphene Coatings for Energy Harvesting
水中存在的离子与石墨烯涂层相互作用的基础研究用于能量收集
  • 批准号:
    2002742
  • 财政年份:
    2020
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Fundamental Study of Environmentally Stable and Lead-Free Chalcogenide Perovskites for Optoelectronic Device Engineering
合作研究:用于光电器件工程的环境稳定、无铅硫系钙钛矿的基础研究
  • 批准号:
    2013640
  • 财政年份:
    2020
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Standard Grant
Fundamental Study of Fatigue Life Enhancement in Hierarchical Carbon-Fiber/Epoxy/Nanoparticle Composites
多级碳纤维/环氧树脂/纳米颗粒复合材料疲劳寿命增强的基础研究
  • 批准号:
    2015750
  • 财政年份:
    2020
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Standard Grant
PFI-TT: Next Generation Lithium-Metal Batteries for High Performance, Low Cost and Safe Energy Storage
PFI-TT:用于高性能、低成本和安全储能的下一代锂金属电池
  • 批准号:
    1922633
  • 财政年份:
    2019
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Standard Grant
PFI:AIR - TT: Demonstration and Device Level Characterization of Lithium-Ion Batteries with Graphene and Graphene-Silicon Based Anodes in Pouch and Cylindrical Cell Form Factors
PFI:AIR - TT:采用石墨烯和石墨烯硅基阳极的软包和圆柱形电池形状的锂离子电池的演示和设备级表征
  • 批准号:
    1640340
  • 财政年份:
    2016
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Standard Grant
UNS: Dendrite-Free Storage of Lithium Metal in Porous Graphene Networks
UNS:多孔石墨烯网络中锂金属的无枝晶存储
  • 批准号:
    1510828
  • 财政年份:
    2015
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Standard Grant
Rapid and Scalable Manufacturing of Graphene Electrodes for Next Generation Lithium-ion Batteries
快速、可扩展地制造下一代锂离子电池的石墨烯电极
  • 批准号:
    1435783
  • 财政年份:
    2014
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Standard Grant
Fundamental Study of Wear in Graphene Nanocomposites
石墨烯纳米复合材料磨损的基础研究
  • 批准号:
    1234641
  • 财政年份:
    2012
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Standard Grant
Next Generation Li-Ion Rechargeable Batteries Featuring Nano-Engineered Anode Architectures
采用纳米工程阳极架构的下一代锂离子充电电池
  • 批准号:
    0969895
  • 财政年份:
    2010
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Standard Grant

相似国自然基金

Mn-Ni-Cu系all-d-metal Heusler合金的设计制备与磁性形状记忆效 应研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Metal-Na2WO4/SiO2催化甲烷氧化偶联的密度泛函理论研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Metal@ZnO-WO3复合纳米纤维微结构调控及对人呼气检测研究
  • 批准号:
    61901293
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
d-metal Heusler磁相变合金NiMnTi(Co)的多相变路径弹热效应研究
  • 批准号:
    51801225
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
狭叶香蒲重金属转运蛋白HMA(Heavy Metal ATPase)类基因的分离鉴定及功能分析
  • 批准号:
    31701931
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Doping Induced Strongly COrrelated Metal Organic Frameworks
掺杂诱导的强相关金属有机框架
  • 批准号:
    EP/X042782/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Research Grant
Developing a deeper understanding of doping and defects in metal oxide semiconductors
加深对金属氧化物半导体掺杂和缺陷的了解
  • 批准号:
    2825196
  • 财政年份:
    2022
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Studentship
Nanostructuring with Functional Particles and Metal Doping to Enhance the Performance of Bulk Thermoelectric Material
利用功能颗粒和金属掺杂进行纳米结构增强体热电材料的性能
  • 批准号:
    21J12616
  • 财政年份:
    2021
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Synthesis of metal-containing mesoporous silica by a post-doping method and its ultraviolet absorbability as an inorganic sunscreen agent
后掺杂法合成含金属介孔二氧化硅及其作为无机防晒剂的紫外吸收性能
  • 批准号:
    21K13493
  • 财政年份:
    2021
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Defects and Doping in Metal-Organic Frameworks
金属有机框架中的缺陷和掺杂
  • 批准号:
    1956403
  • 财政年份:
    2020
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Continuing Grant
Doping effect of rare-earth elements to metal clusters: s-f electron interactions in ultrafine metals
稀土元素对金属团簇的掺杂效应:超细金属中的 s-f 电子相互作用
  • 批准号:
    19K05185
  • 财政年份:
    2019
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Monoatomic metal doping of carbon-based nanomaterials for hydrogen storage
用于储氢的碳基纳米材料的单原子金属掺杂
  • 批准号:
    DE180101030
  • 财政年份:
    2018
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Discovery Early Career Researcher Award
GOALI: Doping Control and Processes in Metal Halide Perovskites
GOALI:金属卤化物钙钛矿的掺杂控制和工艺
  • 批准号:
    1709294
  • 财政年份:
    2017
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Standard Grant
Enabling diamond nanoelectronics with metal oxide induced surface doping
通过金属氧化物诱导表面掺杂实现金刚石纳米电子学
  • 批准号:
    FT160100207
  • 财政年份:
    2017
  • 资助金额:
    $ 39.88万
  • 项目类别:
    ARC Future Fellowships
UNS:Adsorbed water on Transition metal oxide: Doping, Defects and Electrochemistry
UNS:过渡金属氧化物上的吸附水:掺杂、缺陷和电化学
  • 批准号:
    1511733
  • 财政年份:
    2015
  • 资助金额:
    $ 39.88万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了