Fundamental Study of Interaction of Ions Present in Water with Graphene Coatings for Energy Harvesting
水中存在的离子与石墨烯涂层相互作用的基础研究用于能量收集
基本信息
- 批准号:2002742
- 负责人:
- 金额:$ 31.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will investigate an approach to energy harvesting based on the interaction of a fluid such as water with a graphene surface. Graphene is a highly flexible, two-dimensional sheet of carbon atoms and is ideally suited for the coating of large surfaces. This project aims to demonstrate that water flow over graphene surfaces can directly generate electricity. Graphene is ideally suited for this application, since it possesses high-mobility charge carriers that are ready to be coupled to moving ions present in the flowing fluid. Graphene is also flexible, minimally invasive (it is the thinnest material), chemically and mechanically stable, and environmentally benign. Moreover, its synthesis is scalable and macro-scale continuous graphene films can be produced by roll-to-roll deposition techniques. The proposed graphene coating offers unique possibilities for energy harvesting from hitherto untapped renewable sources such as rain, tidal action, waves, ocean currents, river water as well as water flow over boats, submarines, and bridges. Such graphene skins could enable harvesting of the ubiquitous, abundant and renewable mechanical energy of moving water directly to electrical energy. Unlike traditional schemes, the graphene coating directly converts the flow energy into electrical energy without the need for moving parts. Such graphene coatings could also replace conventional batteries (which are environmentally hazardous) in low-power, low-voltage and long service-life applications. Once scaled up, this concept offers a potentially transformative approach to energy harvesting, as compared with incremental advances in current technologies. The investigators will develop specially designed interactive learning modules (or virtual labs) which will be integrated into the curriculum. Outreach includes demonstrations to undergraduates as well as to high school students and teachers. The PIs aim is to popularize science and to attract under-represented groups to pursue careers in renewable energy technologies. This project will tackle the fundamental science and engineering challenges associated with developing graphene-based coatings for nano-fluidic power harvesting. The key science challenge involves understanding in-depth the mechanism(s) responsible for nano-fluidic power harvesting in graphene films. In particular, the project aims to develop a fundamental understanding of how ions present in a fluid such as water, interact and couple with graphene-coated as well as free-standing graphene surfaces. This will be addressed using carefully designed control experiments in conjunction with molecular dynamics and first principles density functional theory calculations. The engineering challenge is equally important and involves scaling up the graphene size in a manner that retains the outstanding power density of the coating. This will be addressed by adapting newly developed roll-to-roll and template-directed chemical vapor deposition techniques to produce macroscale graphene films and foams. The graphene manufacturing process will be optimized to avoid physical interfaces (breaks) in the film as it is scaled up to macroscale dimensions and to tightly control thickness and structure-properties of the graphene. The coupling between experiments and theory, modeling and simulation work will build fundamental understanding of the underlying science and enable successful development, optimization and validation of the proposed technology. The PIs will develop specially designed interactive learning modules (or virtual labs) which will be integrated into the curriculum. Outreach includes demonstrations to undergraduates as well as to high school students and teachers. The PIs aim is to popularize science and to attract under-represented groups to pursue careers in renewable energy technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将研究一种基于水等流体与石墨烯表面相互作用的能量收集方法。石墨烯是一种高度柔性的二维碳原子片,非常适合大表面的涂层。该项目旨在证明石墨烯表面的水流可以直接发电。石墨烯非常适合这种应用,因为它具有高迁移率的电荷载体,可以与流动流体中的移动离子耦合。石墨烯也是灵活的,微创的(它是最薄的材料),化学和机械稳定,环境友好。此外,它的合成是可扩展的,并且可以通过卷对卷沉积技术生产宏观尺度的连续石墨烯膜。所提出的石墨烯涂层提供了从迄今为止未开发的可再生能源中收集能量的独特可能性,例如雨水,潮汐作用,波浪,洋流,河水以及船只,潜艇和桥梁上的水流。这样的石墨烯表皮可以使无处不在的,丰富的和可再生的机械能直接将水转化为电能。与传统方案不同,石墨烯涂层直接将流动能量转化为电能,而不需要移动部件。这种石墨烯涂层还可以在低功率、低电压和长使用寿命应用中取代传统电池(对环境有害)。一旦扩大规模,与当前技术的渐进式进步相比,这一概念为能源收集提供了一种潜在的变革性方法。研究人员将开发专门设计的互动学习模块(或虚拟实验室),这些模块将被整合到课程中。外联活动包括向本科生以及高中学生和教师进行示范。PI的目的是普及科学,吸引代表性不足的群体从事可再生能源技术的职业。 该项目将解决与开发用于纳米流体动力收集的石墨烯涂层相关的基础科学和工程挑战。关键的科学挑战涉及深入了解石墨烯薄膜中纳米流体能量收集的机制。特别是,该项目旨在对水等流体中存在的离子如何与石墨烯涂层以及独立石墨烯表面相互作用和耦合进行基本了解。这将使用精心设计的控制实验结合分子动力学和第一性原理密度泛函理论计算来解决。 工程挑战同样重要,涉及以保持涂层出色功率密度的方式按比例放大石墨烯尺寸。这将通过调整新开发的卷对卷和模板导向化学气相沉积技术来生产宏观尺度的石墨烯薄膜和泡沫来解决。石墨烯制造工艺将进行优化,以避免薄膜中的物理界面(断裂),因为它被放大到宏观尺度,并严格控制石墨烯的厚度和结构特性。实验与理论、建模和仿真工作之间的耦合将建立对基础科学的基本理解,并使所提出的技术能够成功开发、优化和验证。 PI将开发专门设计的互动学习模块(或虚拟实验室),这些模块将被整合到课程中。外联活动包括向本科生以及高中学生和教师进行示范。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nikhil Koratkar其他文献
Short period sinusoidal thermal modulation for quantitative identification of gas species
用于定量识别气体种类的短周期正弦热调制
- DOI:
10.1039/c9nr05863j - 发表时间:
2020 - 期刊:
- 影响因子:6.7
- 作者:
Aijun Yang;Jifeng Chu;Weijuan Li;Dawei Wang;Xu Yang;Tiansong Lan;Xiaohua Wang;Mingzhe Rong;Nikhil Koratkar - 通讯作者:
Nikhil Koratkar
Intraparticle alloying-plating reaction for high-performing lithium metal batteries with low volume expansion
用于具有低体积膨胀的高性能锂金属电池的颗粒内合金化 - 镀覆反应
- DOI:
10.1016/j.mattod.2025.03.012 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:22.000
- 作者:
Zidong Chen;Yiteng Luo;Dongsheng Yang;Yuhang Hu;Haorui Hou;Nikhil Koratkar;Guangmin Zhou;Wei Liu - 通讯作者:
Wei Liu
Nano-silica electrolyte additive enables dendrite suppression in an anode-free sodium metal battery
- DOI:
10.1016/j.nanoen.2024.110010 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Reena A. Panchal;Joy Datta;Vrushali Varude;Kevin Bhimani;Varad Mahajani;Mithil Kamble;Apurva Anjan;Rohit M. Manoj;R. Helen Zha;Dibakar Datta;Nikhil Koratkar - 通讯作者:
Nikhil Koratkar
Virtual Alternating Current Measurements Advance Semiconductor Gas Sensors’ Performance in the Internet of Things
虚拟交流测量提高了半导体气体传感器在物联网中的性能
- DOI:
10.1109/jiot.2021.3108799 - 发表时间:
2021-08 - 期刊:
- 影响因子:10.6
- 作者:
Dawei Wang;Jianbing Pan;Xianbo Huang;Jifeng Chu;Huan Yuan;Aijun Yang;Nikhil Koratkar;Xiaohua Wang;Mingzhe Rong - 通讯作者:
Mingzhe Rong
Piezoelectricity in chalcogenide perovskites
硫族钙钛矿中的压电性
- DOI:
10.1038/s41467-024-50130-5 - 发表时间:
2024-07-09 - 期刊:
- 影响因子:15.700
- 作者:
Sk Shamim Hasan Abir;Shyam Sharma;Prince Sharma;Surya Karla;Ganesh Balasubramanian;Johnson Samuel;Nikhil Koratkar - 通讯作者:
Nikhil Koratkar
Nikhil Koratkar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nikhil Koratkar', 18)}}的其他基金
Collaborative Research: Fundamental Study of Niobium Tungsten Oxide Anodes for High-Performance Aqueous Batteries
合作研究:高性能水系电池用铌钨氧化物阳极的基础研究
- 批准号:
2126178 - 财政年份:2021
- 资助金额:
$ 31.73万 - 项目类别:
Standard Grant
Collaborative Research: Fundamental Study of Environmentally Stable and Lead-Free Chalcogenide Perovskites for Optoelectronic Device Engineering
合作研究:用于光电器件工程的环境稳定、无铅硫系钙钛矿的基础研究
- 批准号:
2013640 - 财政年份:2020
- 资助金额:
$ 31.73万 - 项目类别:
Standard Grant
Fundamental Study of Fatigue Life Enhancement in Hierarchical Carbon-Fiber/Epoxy/Nanoparticle Composites
多级碳纤维/环氧树脂/纳米颗粒复合材料疲劳寿命增强的基础研究
- 批准号:
2015750 - 财政年份:2020
- 资助金额:
$ 31.73万 - 项目类别:
Standard Grant
PFI-TT: Next Generation Lithium-Metal Batteries for High Performance, Low Cost and Safe Energy Storage
PFI-TT:用于高性能、低成本和安全储能的下一代锂金属电池
- 批准号:
1922633 - 财政年份:2019
- 资助金额:
$ 31.73万 - 项目类别:
Standard Grant
PFI:AIR - TT: Demonstration and Device Level Characterization of Lithium-Ion Batteries with Graphene and Graphene-Silicon Based Anodes in Pouch and Cylindrical Cell Form Factors
PFI:AIR - TT:采用石墨烯和石墨烯硅基阳极的软包和圆柱形电池形状的锂离子电池的演示和设备级表征
- 批准号:
1640340 - 财政年份:2016
- 资助金额:
$ 31.73万 - 项目类别:
Standard Grant
Transition Metal Doping in Two-Dimensional, Atomically Thin Semiconductors
二维原子薄半导体中的过渡金属掺杂
- 批准号:
1608171 - 财政年份:2016
- 资助金额:
$ 31.73万 - 项目类别:
Standard Grant
UNS: Dendrite-Free Storage of Lithium Metal in Porous Graphene Networks
UNS:多孔石墨烯网络中锂金属的无枝晶存储
- 批准号:
1510828 - 财政年份:2015
- 资助金额:
$ 31.73万 - 项目类别:
Standard Grant
Rapid and Scalable Manufacturing of Graphene Electrodes for Next Generation Lithium-ion Batteries
快速、可扩展地制造下一代锂离子电池的石墨烯电极
- 批准号:
1435783 - 财政年份:2014
- 资助金额:
$ 31.73万 - 项目类别:
Standard Grant
Fundamental Study of Wear in Graphene Nanocomposites
石墨烯纳米复合材料磨损的基础研究
- 批准号:
1234641 - 财政年份:2012
- 资助金额:
$ 31.73万 - 项目类别:
Standard Grant
Next Generation Li-Ion Rechargeable Batteries Featuring Nano-Engineered Anode Architectures
采用纳米工程阳极架构的下一代锂离子充电电池
- 批准号:
0969895 - 财政年份:2010
- 资助金额:
$ 31.73万 - 项目类别:
Standard Grant
相似国自然基金
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
Basic study on interaction between ultrafine bubbles and surfaces of metal and contaminant
超细气泡与金属及污染物表面相互作用的基础研究
- 批准号:
23K04638 - 财政年份:2023
- 资助金额:
$ 31.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Phylogenomics and eDNA to study interaction networks of insects across tropical rainforests
系统基因组学和 eDNA 研究热带雨林昆虫的相互作用网络
- 批准号:
2892665 - 财政年份:2023
- 资助金额:
$ 31.73万 - 项目类别:
Studentship
Study of interaction and evolutionary mechanism of plant virus coinfection
植物病毒共感染相互作用及进化机制研究
- 批准号:
22KJ0140 - 财政年份:2023
- 资助金额:
$ 31.73万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Buddhist Temples in Modern and Contemporary Japan: A Comparative Study of the Interaction of Tourism and Social Environment
近现代日本的佛教寺院:旅游与社会环境互动的比较研究
- 批准号:
22KJ1303 - 财政年份:2023
- 资助金额:
$ 31.73万 - 项目类别:
Grant-in-Aid for JSPS Fellows
HCC: Small: Investigating the temporal dynamics of resilience during human-computer interaction: an EEG-fNIRS study
HCC:小:研究人机交互过程中弹性的时间动态:一项 EEG-fNIRS 研究
- 批准号:
2232869 - 财政年份:2023
- 资助金额:
$ 31.73万 - 项目类别:
Standard Grant
Systematic study of plasma dynamics under strong electromagnetic fields in beam-plasma interaction
强电磁场下束-等离子体相互作用等离子体动力学的系统研究
- 批准号:
23K03356 - 财政年份:2023
- 资助金额:
$ 31.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Archaeological Study of Interregional Interaction in the Period of Transition from the Ancient Japan to the Medieval Japan
古代日本向中世纪日本过渡时期地区间交往的考古学研究
- 批准号:
22KJ2225 - 财政年份:2023
- 资助金额:
$ 31.73万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Empirical Study of Dynamics of Cooperation Behaviour under Cross-Cultural Conditions by Japan-Australia Interaction Experiments
日澳互动实验对跨文化条件下合作行为动态的实证研究
- 批准号:
22KK0221 - 财政年份:2023
- 资助金额:
$ 31.73万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
An in vivo multiplex model to study gene-environment interaction in Parkinson's Disease
研究帕金森病基因与环境相互作用的体内多重模型
- 批准号:
10843389 - 财政年份:2023
- 资助金额:
$ 31.73万 - 项目类别:
PHASE I COCAINE DRUG INTERACTION STUDY. TO6. NIDA PHARMACOKINETIC ANALYSIS RESOURCE CENTER. 08/10/2023 - 02/09/2025. NIDA REF. NO. N01DA-19-8947.
第一阶段可卡因药物相互作用研究。
- 批准号:
10937276 - 财政年份:2023
- 资助金额:
$ 31.73万 - 项目类别: