GOALI: Doping Control and Processes in Metal Halide Perovskites

GOALI:金属卤化物钙钛矿的掺杂控制和工艺

基本信息

  • 批准号:
    1709294
  • 负责人:
  • 金额:
    $ 39.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2020-09-30
  • 项目状态:
    已结题

项目摘要

Nontechnical Description: Metal halide perovskites refer to a class of semiconductors that have recently achieved an exceptional rate of performance improvement for use in light-emitting devices, photodetectors and solar cells. The combination of excellent performance and facile solution processing open new opportunities for low-cost high-performance electronic devices. While these materials have enjoyed extensive success for application in electronic devices, further improvement is limited in part by a lack of understanding of how to control the number of electrical carriers within the semiconductor (known as doping), which is a vital parameter for establishing device operation. By creating a broadly interdisciplinary project, employing both theory and experimental approaches, the current research seeks to develop a better understanding of doping processes for controlling the level of electrons/holes within this important class of halide perovskites. By achieving the goals of the project, novel designs of higher-efficiency solar cells and light-emitting devices, as well as higher-performance perovskite transistors are expected. Undergraduate, graduate and postdoc researchers play a pivotal role in the multidisciplinary project execution and the project therefore plays a vital role in training future scientists. As a GOALI project, a critical aspect involves broadening student experiences to include industrial research exposure, as well as creating a link to the world-leading materials characterization capabilities within industry. Technical Description: Semiconductor doping using intrinsic/extrinsic crystalline defects establishes the energy levels and carrier densities that determine optoelectronic properties. High-performance photovoltaic materials, for example, rely on careful doping control to modify the electronic properties and improve the device performance to levels approaching the Shockley-Queisser limit. Although metal halide perovskites have received much attention recently, due to the exceptional rise in associated photovoltaic performance, the current understanding and exploration of doping in this class of complex ionic semiconductors remains limited. This project paves the way for more tunable functional halide perovskites by addressing important doping related questions, such as: (1) can the relatively 'soft' nature of metal halide perovskites create special challenges and opportunities for development of new doping pathways; (2) can the use of complexes rather than individual ions enhance doping tenability; and (3) what opportunity for molecular doping exist within the organic cation layer versus impurity doping within the metal halide framework? In order to develop this critical understanding, the project integrates academic and industrial research in materials synthesis, optoelectronic characterization and theory to investigate dopant incorporation and activation in perovskite semiconductors. The research consists of several thrusts, including: (1) theory/computation-guided development of new dopants and doping processes, (2) exploration of molecular dopants in hybrid perovskites, (3) manipulation of radiative recombination using doping and (4) application of unique electrical transport characterization tools, developed by the industrial partner, to understand doping in halide perovskites and also to provide a framework for future study of transport phenomena in complex materials.
非技术描述:金属卤化物钙钛矿是指最近在发光设备,光电探测器和太阳能电池中实现了出色的性能提高率的一类半导体。出色的性能和便捷解决方案处理为低成本高性能电子设备开放新机会。尽管这些材料在电子设备中的应用方面取得了广泛的成功,但进一步的进一步改进受到部分限制,部分原因是缺乏如何控制半导体内的电载体数量(称为掺杂),这是建立设备操作的重要参数。通过创建一个广泛的跨学科项目,采用理论和实验方法,当前的研究试图更好地理解兴奋剂过程,以控制这一重要的卤化物perovskites中电子/孔的水平。通过实现该项目的目标,可以预期高效太阳能电池和发光设备的新型设计以及高性能的钙钛矿晶体管。本科,研究生和博士后研究人员在多学科项目执行中起着关键作用,因此该项目在培训未来的科学家中起着至关重要的作用。作为一个目标项目,关键方面涉及扩大学生的经验,以包括工业研究的曝光,并建立与行业内部领先的材料表征能力的链接。技术描述:使用固有/外部晶体缺陷的半导体掺杂建立了确定光电特性的能级和载体密度。例如,高性能光伏材料依靠仔细的掺杂控制来修改电子特性,并将设备性能提高到接近冲击式式赛车限制的水平。尽管最近由于相关光伏性能的出色增长,金属卤化物钙钛矿最近受到了很多关注,因此当前对这类复杂离子半导体掺杂的理解和探索仍然有限。该项目通过解决重要的兴奋剂相关问题,例如:(1)金属卤化物钙钛矿的相对“软”性质可以带来特殊的挑战和开发新兴奋剂途径的机会; (2)使用复合物而不是单个离子可以增强兴奋剂的态度; (3)在金属卤化物框架内,有机阳离子层与杂质掺杂中存在什么分子掺杂的机会?为了发展这种批判性理解,该项目将材料合成,光电特征和理论的学术和工业研究整合在一起,以研究钙钛矿半导体中的掺杂剂的掺入和激活。 The research consists of several thrusts, including: (1) theory/computation-guided development of new dopants and doping processes, (2) exploration of molecular dopants in hybrid perovskites, (3) manipulation of radiative recombination using doping and (4) application of unique electrical transport characterization tools, developed by the industrial partner, to understand doping in halide perovskites and also to provide a framework for future study复杂材料中的运输现象。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Carrier-resolved photo-Hall effect
  • DOI:
    10.1038/s41586-019-1632-2
  • 发表时间:
    2019-11-07
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Gunawan, Oki;Pae, Seong Ryul;Shin, Byungha
  • 通讯作者:
    Shin, Byungha
Electronic structure and photophysics of a supermolecular iron complex having a long MLCT-state lifetime and panchromatic absorption
A Versatile Thin-Film Deposition Method for Multidimensional Semiconducting Bismuth Halides
  • DOI:
    10.1021/acs.chemmater.8b01341
  • 发表时间:
    2018-05-22
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Khazaee, Maryam;Sardashti, Kasra;Mitzi, David B.
  • 通讯作者:
    Mitzi, David B.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Mitzi其他文献

David Mitzi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Mitzi', 18)}}的其他基金

Collaborative Research: DMREF: Data-Driven Prediction of Hybrid Organic-Inorganic Structures
合作研究:DMREF:混合有机-无机结构的数据驱动预测
  • 批准号:
    2323547
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Amorphous-Crystalline Switching in Organic-Inorganic Hybrid Semiconductors
合作研究:有机-无机混合半导体中的非晶-晶体转换
  • 批准号:
    2114117
  • 财政年份:
    2021
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
REU SITE: Collaborative Research: Nanoscale Detectives -- Elucidating the Structure and Dynamics of Hybrid Perovskite Systems
REU 站点:合作研究:纳米级侦探——阐明混合钙钛矿系统的结构和动力学
  • 批准号:
    2050841
  • 财政年份:
    2021
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
GOALI: Additive and Stoichiometry Engineering in Perovskites: Building Deeper Understanding of the Impact on Optoelectronic Properties for Energy Applications
GOALI:钙钛矿的添加剂和化学计量工程:更深入地了解对能源应用光电性能的影响
  • 批准号:
    2004869
  • 财政年份:
    2020
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
UNS: Defect Engineering in Zinc-Blende-Type Absorbers
UNS:闪锌矿型吸收器的缺陷工程
  • 批准号:
    1511737
  • 财政年份:
    2015
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant

相似国自然基金

基于掺杂工程调控Ziegler-Natta催化剂中MgCl2载体微环境及其催化乙烯聚合性能研究
  • 批准号:
    22368033
  • 批准年份:
    2023
  • 资助金额:
    32.00 万元
  • 项目类别:
    地区科学基金项目
过渡元素和稀土元素共掺杂Ni-Mn-Sn合金定向凝固组织控制及高弹卡制冷疲劳寿命机理研究
  • 批准号:
    52301014
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
回收废电池可控制备多原子掺杂磷化镍及强化电吸附回收氨氮的应用
  • 批准号:
    52370053
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
面向柔性超级电容器的电活性分子掺杂导电聚合物/MXene分级结构复合材料的可控制备与性能研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
稀土离子掺杂的BiOX(X=Cl、Br、I)纳米压电材料的可控制备、性质研究及医学应用探索
  • 批准号:
    22275045
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Establishment of a novel carrier doping method for molecular crystals and precise electronic state control
分子晶体新型载流子掺杂方法的建立及精确电子态控制
  • 批准号:
    22KJ2334
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Departure from conductivity control with impurity doping in widegap semiconductors
宽禁带半导体中杂质掺杂偏离电导率控制
  • 批准号:
    23H05460
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Develop a carrier control method for diamond using heterojunction doping technique
利用异质结掺杂技术开发金刚石载流子控制方法
  • 批准号:
    20H00313
  • 财政年份:
    2020
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Control of optoelectronic properties of non-stoichiometric compounds ScN by impurity doping
杂质掺杂控制非化学计量化合物ScN的光电性能
  • 批准号:
    20K05335
  • 财政年份:
    2020
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Continuous carrier control of redox MOFs by electrochemical doping
通过电化学掺杂连续控制氧化还原 MOF 的载流子
  • 批准号:
    19H02729
  • 财政年份:
    2019
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了