Defining the classical and quantum limits of surface plasmon optics with hard-soft nanoantenna systems
用硬软纳米天线系统定义表面等离子体光学的经典和量子极限
基本信息
- 批准号:1608525
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Title: Exploring the limits of optical enhancement with nanoscale antennasNon-technical description: Nanoscale antennas are a gateway to the next generation of miniaturized optical systems for communications, sensing, energy conversion, and optical imaging applications. The purpose of this research is to understand the physical limits of light manipulation with nanoscale metal antennas. In particular, our goal is to quantify these limits and to understand their connection with metal antenna geometry. We will probe the relationship between antenna geometry and optical properties by characterizing a metal antenna platform that can reconfigure as a function of mechanical strain. This research will help us develop new technologies, based on nanoscale optical devices, which can operate at their absolute physical limits. For example, it can be used to design ultra-sensitive sensing platforms with optical readout, which will serve as the cornerstone for new optically-based point-of-care biomedical technologies. It will also help us advance our understanding of green energy devices that utilize nanoscale antennas for photocatalytic and energy harvesting processes.Technical description: Optical antennas have tremendous potential in miniaturized photonic systems because they can tailor electromagnetic fields with unprecedented control. The research goal of this NSF proposal is to measure and quantify plasmonic near-field coupling and field-enhanced phenomena in the classical and quantum regime using devices that can dynamically reconfigure with extreme mechanical control. Three research objectives will be pursued to: i) understand how optical modes transform in mechanically-actuated antennas; ii) explore the non-linear optics of antennas with nanoscale gap spacings; and, iii) understand how symmetry breaking can control optical modes. To address these objectives, a new type of mechanically-tunable nanoantenna, consisting of plasmonic antennas mounted onto an elastomer, is proposed. The project outcome will fill a significant void in the field of quantum plasmonics and address significant fundamental questions that are scientifically unexplored, including: what are the fundamental field-enhancement limits in coupled antennas? How can the chemical surface modification of antennas impact their near-field coupling in the quantum plasmonics regime? How can device reconfiguration enable extreme sensitivity in optical sensors? By analyzing individual antennas with dynamically tunable configurations, as oppose to multiple devices with differing static configurations, uncertainties due to uncontrolled fabrication variations from device to device are eliminated.
职务名称:探索纳米天线光学增强的极限非技术描述:纳米天线是下一代小型化光学系统的门户,用于通信,传感,能量转换和光学成像应用。本研究的目的是了解纳米金属天线光操纵的物理限制。特别是,我们的目标是量化这些限制,并了解它们与金属天线几何形状的联系。我们将探讨天线的几何形状和光学性能之间的关系,通过表征金属天线平台,可以重新配置为机械应变的函数。这项研究将帮助我们开发基于纳米级光学器件的新技术,这些器件可以在其绝对物理极限下工作。例如,它可用于设计具有光学读出的超灵敏传感平台,这将成为新的基于光学的即时生物医学技术的基石。这也将帮助我们推进我们对利用纳米天线进行光催化和能量收集过程的绿色能源设备的理解。技术描述:光学天线在小型化光子系统中具有巨大的潜力,因为它们可以以前所未有的控制来定制电磁场。该NSF提案的研究目标是测量和量化等离子体近场耦合和场增强现象在经典和量子制度使用的设备,可以动态重新配置极端的机械控制。三个研究目标将追求:i)了解光学模式如何在机械驱动天线转换; ii)探索天线与纳米间隙间距的非线性光学;和,iii)了解对称性破缺如何控制光学模式。为了解决这些问题,提出了一种新型的机械可调纳米天线,由安装在弹性体上的等离子体天线组成。该项目的成果将填补量子等离子体领域的一个重大空白,并解决科学上尚未探索的重大基本问题,包括:耦合天线中的基本场增强极限是什么?天线的化学表面改性如何影响它们在量子等离子体机制中的近场耦合?器件重新配置如何实现光学传感器的极高灵敏度?通过分析具有动态可调谐配置的各个天线,与具有不同静态配置的多个设备相反,消除了由于设备之间的不受控制的制造变化而导致的不确定性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Fan其他文献
“Deep approaches to learning” in a project‐based nanofabrication graduate course
基于项目的纳米制造研究生课程中的“深度学习方法”
- DOI:
10.1002/jsid.1182 - 发表时间:
2022 - 期刊:
- 影响因子:2.3
- 作者:
Mary Tang;S. Kommera;U. Raghuram;Michelle Rincon;Xiaoqing Xu;Jonathan Fan;R. Howe - 通讯作者:
R. Howe
Alzheimer's Disease-Related Psychosis is Positively Correlated with Preserved Hippocampal Volume
- DOI:
10.1016/j.jagp.2024.01.116 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:
- 作者:
Jonathan Fan;Luis Fornazzari;Nathan Churchill;David Munoz;Tom Schweizer;Ayad Fadhel;Corinne E. Fischer - 通讯作者:
Corinne E. Fischer
Electrical and calcium signaling of nerve and muscle in unicellular choanoflagellates
- DOI:
10.1016/j.bpj.2023.11.1234 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
J. David Spafford;Amrit Mehta;Shazah Waqar;Prashanth S. Velayudhan;Jonathan Fan;Tarun Sharma;Anitha Bhat;Zaid Alsamman;Curtis Jeffery;Veronika Magdanz;Afnan Alsakani - 通讯作者:
Afnan Alsakani
Postnatal downregulation of Fmr1 in microglia promotes microglial reactivity and causes behavioural alterations in female mice
- DOI:
10.1186/s13229-025-00648-2 - 发表时间:
2025-03-07 - 期刊:
- 影响因子:5.500
- 作者:
Mehdi Hooshmandi;David Ho-Tieng;Kevin C. Lister;Weihua Cai;Calvin Wong;Nicole Brown;Jonathan Fan;Volodya Hovhannisyan;Sonali Uttam;Masha Prager-Khoutorsky;Nahum Sonenberg;Christos G. Gkogkas;Arkady Khoutorsky - 通讯作者:
Arkady Khoutorsky
Jonathan Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Fan', 18)}}的其他基金
Modulating and engineering Luttinger liquid plasmons in low dimensional materials
低维材料中卢廷格液体等离子体的调制和工程
- 批准号:
2103721 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
CDS&E: Physics-driven computational tools for photonic design
CDS
- 批准号:
2103301 - 财政年份:2021
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Crystal orientation and defect control in active and passive plasmonic systems
主动和被动等离子体系统中的晶体取向和缺陷控制
- 批准号:
1804224 - 财政年份:2018
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
相似国自然基金
浸润特性调制的统计热力学研究
- 批准号:21173271
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
Mixed Quantum-Classical Semiclassical Theory: Finding Reaction Paths in Open Quantum Systems
混合量子经典半经典理论:寻找开放量子系统中的反应路径
- 批准号:
2404809 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Understanding Emission, Absorption and Energy Transfer Involving Classical and Quantum Light Interacting with Molecules
了解涉及经典光和量子光与分子相互作用的发射、吸收和能量转移
- 批准号:
2347622 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Foundations of Classical and Quantum Verifiable Computing
经典和量子可验证计算的基础
- 批准号:
MR/X023583/1 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Fellowship
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
- 批准号:
2336135 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2423960 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collective Quantum Thermodynamics: Quantum vs Classical
集体量子热力学:量子与经典
- 批准号:
MR/Y003845/1 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Fellowship
FET: SHF: Small: A Verification Framework for Hybrid Classical and Quantum Protocols (VeriHCQ)
FET:SHF:小型:混合经典和量子协议的验证框架 (VeriHCQ)
- 批准号:
2330974 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
- 批准号:
2336136 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
CAREER: From Quantum to Classical and Back: Bringing 2D Spectroscopy Insights into Focus
职业生涯:从量子到经典再回归:聚焦二维光谱学见解
- 批准号:
2236625 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
ERI: Harnessing Quantum-Classical Computing with a Cloud-Edge Framework for Cyber-Physical Systems
ERI:利用量子经典计算与网络物理系统的云边缘框架
- 批准号:
2301884 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant