CDS&E: Physics-driven computational tools for photonic design
CDS
基本信息
- 批准号:2103301
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Device innovation today typically requires scientists or engineers to perform a time-consuming iterative procedure involving design and simulation. The design process is based on the application of expert knowledge to identify plausible device layouts, which are validated with a general physics-based algorithm and iteratively improved. New advances in machine learning have the potential to be disruptive in this innovation cycle, due to the ability for such algorithms to learn and process data in entirely new ways. This proposal focuses on the development of new machine learning tools that can automate and dramatically accelerate the design and simulation procedure by orders of magnitude faster speeds. These concepts will be based on a new class of algorithms that bring together conventional concepts in the data sciences with physics. Optical devices that can serve as miniaturized optical systems will be used as a testbed to benchmark the performance of these algorithms, though the concepts are ultimately general to scientific computing problems. If successful, these algorithms will serve as the foundation for a new class of computer-aided design tools that will help scientists and engineers innovate new classes of devices and systems with great expediency. The education goal of this project is to develop and disseminate new curricula that inspires high school students to consider STEM as a career pathway. The research objective of this proposal is to create an algorithmic platform for the global optimization of freeform photonic devices that can scale to large area, three-dimensional, multi-functional devices. The fundamental roadblock that is targeted is the inability of existing global freeform optimization methods to practically scale to complex three-dimensional systems, due to scaling limits in the sampling and simulation of devices within the global design space. These fundamental scaling limits will be addressed by creating data-driven and physics-driven neural network electromagnetic surrogate solvers that can couple with new global search and design space evaluation tools based on deep network training. The proposed concepts will build on a recent discovery that population-based global freeform optimization can be performed by training a generative neural network using physics-based calculations. The expected outcomes are the development of new concepts and broadly applicable algorithms that will enable the global optimization of three-dimensional dielectric electromagnetic devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
今天的设备创新通常需要科学家或工程师执行一个耗时的迭代过程,包括设计和模拟。设计过程基于专家知识的应用,以确定合理的器件布局,并通过基于一般物理的算法进行验证,并进行迭代改进。机器学习的新进展有可能颠覆这个创新周期,因为这种算法能够以全新的方式学习和处理数据。该提案的重点是开发新的机器学习工具,这些工具可以将设计和仿真过程自动化,并以更快的速度显著加速。这些概念将基于一类新的算法,这些算法将数据科学中的传统概念与物理学结合在一起。可以作为小型光学系统的光学设备将被用作测试这些算法性能的基准,尽管这些概念最终适用于科学计算问题。如果成功的话,这些算法将成为一种新型计算机辅助设计工具的基础,这种工具将帮助科学家和工程师以极大的便利创造出新型的设备和系统。该项目的教育目标是开发和传播新的课程,激励高中生将STEM作为职业道路。本课题的研究目标是为自由形状光子器件的全局优化提供一个算法平台,使其能够扩展到大面积、三维、多功能的器件。主要的障碍是现有的全局自由曲面优化方法无法实际扩展到复杂的三维系统,这是由于全局设计空间内设备采样和模拟的缩放限制。这些基本的扩展限制将通过创建数据驱动和物理驱动的神经网络电磁代理求解器来解决,这些求解器可以与基于深度网络训练的新的全局搜索和设计空间评估工具相结合。提出的概念将建立在最近的一项发现之上,即可以通过使用基于物理的计算训练生成神经网络来执行基于种群的全局自由形状优化。预期结果是新概念和广泛适用的算法的发展,这将使三维介质电磁器件的全局优化成为可能。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Algorithm-Driven Paradigms for Freeform Optical Engineering
- DOI:10.1021/acsphotonics.2c00612
- 发表时间:2022-08-09
- 期刊:
- 影响因子:7
- 作者:Fan, Jonathan A.;Chen, Mingkun;Jiang, Jiaqi
- 通讯作者:Jiang, Jiaqi
High Speed Simulation and Freeform Optimization of Nanophotonic Devices with Physics-Augmented Deep Learning
- DOI:10.1021/acsphotonics.2c00876
- 发表时间:2022-08
- 期刊:
- 影响因子:7
- 作者:Ming-Keh Chen;Robert Lupoiu;Chenkai Mao;Der-Han Huang;Jiaqi Jiang;P. Lalanne;Jonathan A. Fan
- 通讯作者:Ming-Keh Chen;Robert Lupoiu;Chenkai Mao;Der-Han Huang;Jiaqi Jiang;P. Lalanne;Jonathan A. Fan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Fan其他文献
“Deep approaches to learning” in a project‐based nanofabrication graduate course
基于项目的纳米制造研究生课程中的“深度学习方法”
- DOI:
10.1002/jsid.1182 - 发表时间:
2022 - 期刊:
- 影响因子:2.3
- 作者:
Mary Tang;S. Kommera;U. Raghuram;Michelle Rincon;Xiaoqing Xu;Jonathan Fan;R. Howe - 通讯作者:
R. Howe
Alzheimer's Disease-Related Psychosis is Positively Correlated with Preserved Hippocampal Volume
- DOI:
10.1016/j.jagp.2024.01.116 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:
- 作者:
Jonathan Fan;Luis Fornazzari;Nathan Churchill;David Munoz;Tom Schweizer;Ayad Fadhel;Corinne E. Fischer - 通讯作者:
Corinne E. Fischer
Electrical and calcium signaling of nerve and muscle in unicellular choanoflagellates
- DOI:
10.1016/j.bpj.2023.11.1234 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
J. David Spafford;Amrit Mehta;Shazah Waqar;Prashanth S. Velayudhan;Jonathan Fan;Tarun Sharma;Anitha Bhat;Zaid Alsamman;Curtis Jeffery;Veronika Magdanz;Afnan Alsakani - 通讯作者:
Afnan Alsakani
Postnatal downregulation of Fmr1 in microglia promotes microglial reactivity and causes behavioural alterations in female mice
- DOI:
10.1186/s13229-025-00648-2 - 发表时间:
2025-03-07 - 期刊:
- 影响因子:5.500
- 作者:
Mehdi Hooshmandi;David Ho-Tieng;Kevin C. Lister;Weihua Cai;Calvin Wong;Nicole Brown;Jonathan Fan;Volodya Hovhannisyan;Sonali Uttam;Masha Prager-Khoutorsky;Nahum Sonenberg;Christos G. Gkogkas;Arkady Khoutorsky - 通讯作者:
Arkady Khoutorsky
Jonathan Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Fan', 18)}}的其他基金
Modulating and engineering Luttinger liquid plasmons in low dimensional materials
低维材料中卢廷格液体等离子体的调制和工程
- 批准号:
2103721 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Crystal orientation and defect control in active and passive plasmonic systems
主动和被动等离子体系统中的晶体取向和缺陷控制
- 批准号:
1804224 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Defining the classical and quantum limits of surface plasmon optics with hard-soft nanoantenna systems
用硬软纳米天线系统定义表面等离子体光学的经典和量子极限
- 批准号:
1608525 - 财政年份:2016
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
相似国自然基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Chinese Physics B
- 批准号:11224806
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Frontiers of Physics 出版资助
- 批准号:11224805
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese physics B
- 批准号:11024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
- 批准号:
EP/Y027930/1 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Fellowship
Development of a Physics-Data Driven Surface Flux Parameterization for Flow in Complex Terrain
开发物理数据驱动的复杂地形流动表面通量参数化
- 批准号:
2336002 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
- 批准号:
2236947 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Elements: A Convergent Physics-based and Data-driven Computing Platform for Building Modeling
Elements:基于物理和数据驱动的融合计算平台,用于建筑建模
- 批准号:
2311685 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Predicting flood-induced flow and sediment dynamics using data-driven physics-informed models
使用数据驱动的物理模型预测洪水引起的流量和沉积物动力学
- 批准号:
2233986 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Development of a mid-IR laser driven X-ray spectroscopic system for zeptosecond atomic, molecular, particle physics
开发用于泽秒原子、分子、粒子物理的中红外激光驱动 X 射线光谱系统
- 批准号:
23H01877 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
High fidelity micro- and meso-scale computations and data-driven physics-informed models of particle-laden flows
高保真微观和中观尺度计算以及数据驱动的粒子负载流物理模型
- 批准号:
RGPIN-2022-03114 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Discovery Grants Program - Individual
A physics-driven neural network model of working memory
物理驱动的工作记忆神经网络模型
- 批准号:
570263-2022 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Exploring Spin-Orbit-Driven Physics in Iridium-based Quantum Materials
探索铱基量子材料中的自旋轨道驱动物理学
- 批准号:
574354-2022 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
University Undergraduate Student Research Awards
CRCNS: Waste-clearance flows in the brain measured using physics-informed neural network
CRCNS:使用物理信息神经网络测量大脑中的废物清除流量
- 批准号:
10706594 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别: