Nuclear Magnetic Resonance Study of Emergent Orders
紧急订单的核磁共振研究
基本信息
- 批准号:1608760
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical Abstract:The technological drive to find new materials with controllable desired properties for advanced applications in information, sensing, and energy technologies, requires understanding of the new forms of quantum matter. A central issue in quantum materials research is study of the combined effects of strong electronic correlations with local entanglement of spin and orbital degrees of freedom, so-called spin-orbit coupling (SOC). Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local charge/orbital or local spin properties. This award supports research on extensive study of these emergent phases using local microscopic measurements, designed to concurrently probe spin, charge/orbital, and lattice properties. The transformative goal of this research is to identify an appropriate theoretical framework for describing systems with both strong correlations and SOC and so promote the discovery of materials with designed properties. The researchers at Brown University and National High Magnetic Field Laboratory simultaneously probe magnetic and orbital/charge properties while subjecting the samples to uniaxial stress, strain, and applied magnetic field, to tune competing interactions. A strong educational component is imbedded in the project by establishing a challenging training ground for students, both graduate and undergraduate, who will be involved in the scientific, modeling, and technical developments. Technical Abstract:This research program focuses on the experimental investigation of emergent orders in strongly correlated electron systems with notable spin-orbit coupling (SOC) using nuclear magnetic resonance (NMR) techniques with the goal to decipher the complex interplay between different interactions that leads to the emergent quantum states of matter. These NMR measurements are designed to concurrently probe spin, charge/orbital, and lattice degrees of freedom at the relevant low energy, while subjecting the samples to symmetry-breaking uniaxial stress, strain, and magnetic field. To achieve these objectives, the researchers develop a novel NMR approach, based on the use of surface coils, to allow for both in-situ stress and strain variation. Initial emphasis of the research is on Fe-based superconductor model systems. The team performs NMR in the same experimental conditions of applied uniaxial stress and strain as those of transport properties. Correlating these findings provides a picture of the microscopic nature of electronic liquid crystals (nematic) and magnetic states; the coexistence of the multiple order parameters, and of the role their associated fluctuations play in establishing unconventional superconductivity. To provide general understanding of intrinsic properties of electronic nematic phases, this work extends from unconventional superconductors (doped Mott insulators) to the magnetic Mott insulators with strong SOC (e.g. 5d-electrons double perovskite systems). The transformative goal of the research is to understand electronic mechanism of nematicity in systems with both localized and itinerant electrons, and to help identify an appropriate theoretical framework for describing systems in which correlations and SOC are of comparable energy scale and neither can be treated perturbatively. The participating graduate and undergraduate students will gain valuable research experience at the National High Magnetic Field Laboratory.
非技术摘要:为信息、传感和能源技术的高级应用寻找具有可控所需特性的新材料的技术驱动力,需要理解量子物质的新形式。量子材料研究中的一个中心问题是研究强电子关联与自旋和轨道自由度的局域纠缠的组合效应,即所谓的自旋轨道耦合(SOC)。预测涌现性质是一个巨大的理论问题,因为SOC的存在意味着自旋不是一个好的量子数。现有的理论提出了大量的奇异量子相的出现,可通过局部电荷/轨道或局部自旋特性来区分。该奖项支持使用局部微观测量对这些紧急阶段进行广泛研究的研究,旨在同时探测自旋,电荷/轨道和晶格性质。这项研究的变革性目标是确定一个适当的理论框架,用于描述具有强相关性和SOC的系统,从而促进具有设计特性的材料的发现。布朗大学和国家高磁场实验室的研究人员同时探测磁性和轨道/电荷性质,同时使样品受到单轴应力,应变和施加的磁场,以调节竞争相互作用。一个强大的教育组件嵌入在该项目中,为研究生和本科生建立一个具有挑战性的培训基地,他们将参与科学,建模和技术开发。 技术摘要:该研究计划的重点是使用核磁共振(NMR)技术对具有显着自旋轨道耦合(SOC)的强相关电子系统中的涌现顺序进行实验研究,目标是破译导致物质涌现量子态的不同相互作用之间的复杂相互作用。这些NMR测量被设计为同时探测自旋、电荷/轨道和晶格自由度在相关的低能量下,同时使样品经受破坏单轴应力、应变和磁场。为了实现这些目标,研究人员开发了一种新的NMR方法,该方法基于使用表面线圈,以允许原位应力和应变变化。研究的初始重点是铁基超导体模型系统。该团队在与传输特性相同的单轴应力和应变实验条件下进行NMR。将这些发现联系起来,我们就可以看到电子液晶(ELC)和磁态的微观本质;多阶参数的共存,以及它们相关的涨落在建立非常规超导性中所起的作用。为了提供对电子超导相的固有性质的一般理解,这项工作从非常规超导体(掺杂的Mott绝缘体)扩展到具有强SOC的磁性Mott绝缘体(例如,5d电子双钙钛矿系统)。该研究的变革性目标是了解具有定域和巡回电子的系统中向列性的电子机制,并帮助确定一个适当的理论框架来描述系统,其中相关性和SOC具有可比的能量尺度,并且两者都不能微扰处理。参与的研究生和本科生将在国家高磁场实验室获得宝贵的研究经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vesna Mitrovic其他文献
Antiferromagnetism in the Vortex Cores of YBa$_2$Cu$_3$O$_{7-\delta}$
YBa$_2$Cu$_3$O$_{7-delta}$ 涡核中的反铁磁性
- DOI:
10.1103/physrevb.67.220503 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Vesna Mitrovic;Eric E. Sigmund;W. P. Halperin;A. Reyes;P. Kuhns;W. Moulton - 通讯作者:
W. Moulton
VaultDB: A Real-World Pilot of Secure Multi-Party Computation within a Clinical Research Network
VaultDB:临床研究网络中安全多方计算的现实试点
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jennie Duggan;Elizabeth Adetoro;Johes Bater;Talia Canter;Dong Fu;A. Hamilton;Amro Hassan;Ashley Martinez;Erick Michalski;Vesna Mitrovic;Fred D. Rachman;Raj C. Shah;Matt Sterling;Kyra VanDoren;Theresa L. Walunas;Xiao Wang;Abel Kho - 通讯作者:
Abel Kho
Anisotropy of electrical transport and superconductivity in metal chains of Nb2Se3
Nb2Se3 金属链中电输运和超导的各向异性
- DOI:
10.1103/physrevb.75.064517 - 发表时间:
2007 - 期刊:
- 影响因子:3.7
- 作者:
R. Hu;Rongwei Hu;K. Lauritch;J. O’Brian;Vesna Mitrovic;C. Petrovic - 通讯作者:
C. Petrovic
Vesna Mitrovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vesna Mitrovic', 18)}}的其他基金
QLCI-CG: Identification and Control of Fundamental Properties of Quantum Systems
QLCI-CG:量子系统基本属性的识别和控制
- 批准号:
1936854 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Magnetic Resonance Study of Novel Phases and Dynamics in the Strongly Correlated Spin-Orbit Coupled Materials
强相关自旋轨道耦合材料新相和动力学的磁共振研究
- 批准号:
1905532 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
RII Track-2 FEC: Harnessing the Data Revolution for the Quantum Leap: From Quantum Control to Quantum Materials
RII Track-2 FEC:利用数据革命实现量子飞跃:从量子控制到量子材料
- 批准号:
1921199 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Cooperative Agreement
Materials World Network: Microscopic Study of Inhomogeneous Supeconductivity
材料世界网:非均匀超导性的微观研究
- 批准号:
0710551 - 财政年份:2007
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: NMR Studies of Quantum Fluctuations in Strongly Correlated Systems in High Magnetic Fields and at Low Temperatures
职业:高磁场和低温下强相关系统中量子涨落的核磁共振研究
- 批准号:
0547938 - 财政年份:2006
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
IMR: Acquisition of a High Magnetic Field Dilution Refrigerator System for Materials Research and Education
IMR:采购用于材料研究和教育的高磁场稀释制冷系统
- 批准号:
0526775 - 财政年份:2005
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似海外基金
Deciphering the Competing Mechanisms of Li Microstructure Formation in Solid Electrolytes with Nuclear Magnetic Resonance Spectroscopy (NMR) and Imaging (MRI)
利用核磁共振波谱 (NMR) 和成像 (MRI) 解读固体电解质中锂微结构形成的竞争机制
- 批准号:
2319151 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Sensitivity Enhancement in Nuclear Magnetic Resonance (NMR) by Para-hydrogen Induced Hyperpolarization (SenseNMR)
通过仲氢诱导超极化 (SenseNMR) 增强核磁共振 (NMR) 灵敏度
- 批准号:
2885315 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Studentship
Innovation of cancer chemoradiotherapy based on hyperpolarized-nuclear magnetic resonance metabolic imaging
基于超极化核磁共振代谢成像的癌症放化疗创新
- 批准号:
23H02870 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nuclear magnetic resonance spectrometer for measurements at elevated pressures
用于高压测量的核磁共振波谱仪
- 批准号:
516655476 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Major Research Instrumentation
Probing in situ higher order structures of monoclonal antibodies at water-air and water-oil interfaces via high-field nuclear magnetic resonance spectroscopy for viral infections
通过高场核磁共振波谱技术在水-空气和水-油界面原位探测单克隆抗体的高阶结构以检测病毒感染
- 批准号:
10593377 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
NMR-BASE: Nuclear Magnetic Resonance for Biomolecule Analysis in Supported Environments
NMR-BASE:在支持的环境中进行生物分子分析的核磁共振
- 批准号:
BB/X019594/1 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Regulation mechanism of intra-nuclear reactions studied by nanoscale magnetic resonance
纳米磁共振研究核内反应调控机制
- 批准号:
23H00370 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
CAS-MNP: Understanding the Interactions Between Small Molecules and Plastic Nanoparticles for Environmental Remediation and Sensing Using Nuclear Magnetic Resonance
CAS-MNP:了解小分子和塑料纳米颗粒之间的相互作用,用于环境修复和核磁共振传感
- 批准号:
2304888 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
600 MHz Nuclear Magnetic Resonance Spectrometer (NMR spectrometer)
600 MHz核磁共振波谱仪(NMR波谱仪)
- 批准号:
531954423 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Major Research Instrumentation
Enhanced Solid-State Nuclear Magnetic Resonance Spectroscopy of Amorphous Solid Dispersions for Pharmaceutical Sciences
用于制药科学的非晶固体分散体的增强型固态核磁共振波谱分析
- 批准号:
2889117 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Studentship