Robust and Scalable Volume Minimization-based Matrix Factorization for Sensing and Clustering

用于传感和聚类的鲁棒且可扩展的基于体积最小化的矩阵分解

基本信息

  • 批准号:
    1608961
  • 负责人:
  • 金额:
    $ 35.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2018-10-31
  • 项目状态:
    已结题

项目摘要

This project focuses on matrix factorization using a simplicial cone model, which has a wide variety of applications in remote sensing (particularly hyperspectral imaging), radio frequency sensing for dynamic spectrum access, clustering and topic modeling, and social network analysis, to name a few. The project focuses on robust and scalable computational tools for this model, using a convex hull volume minimization criterion. The motivation partially comes from a result that was recently obtained by the principal investigators, showing that unique factorization is possible under mild conditions if one adopts the volume minimization criterion. These conditions are far more realistic than those required by existing approaches, suggesting that more challenging scenarios and even new application domains are within reach if only related optimization, robustness, and scalability challenges can be effectively addressed. This research will provide the computational underpinnings of these exciting developments. High-performance volume minimization software will be publicly released to enable researchers and practitioners to tackle new problems, handle much larger datasets, and boost performance in existing applications like hyperspectral imaging. On the education front, the project will help train a graduate student in cutting-edge computational engineering research, and will also help engage talented undergraduates through senior honors projects, introducing them to research and publication opportunities. In terms of theory and methods, key aspects of volume minimization-based matrix factorization are still poorly understood. The research will provide a set of high-performance computational tools rooted in deep understanding of the strengths and weaknesses of the original volume minimization criterion which promises exciting discoveries. The research will evolve along the following synergistic thrusts: i) robust optimization algorithms for volume minimization; ii) scalable and adaptive algorithms towards online volume minimization; iii) validation, using existing (e.g., hyperspectral imaging) as well as promising new (e.g., document clustering) applications; and iv) theoretical aspects of the volume minimization formulation, focusing on fundamentals such as identifiability and performance bounds. Devising scalable volume minimization algorithms makes a lot of sense for modern sensing and clustering problems which involve rapidly increasing amounts of data. From an applications point of view, volume minimization for spectrum sensing, channel identification, and document clustering are completely new and challenging.
这个项目的重点是矩阵分解使用单纯锥模型,它有各种各样的应用在遥感(特别是高光谱成像),无线电频率传感的动态频谱访问,聚类和主题建模,以及社会网络分析,仅举几例。该项目的重点是这个模型的强大和可扩展的计算工具,使用凸船体体积最小化标准。动机部分来自最近获得的主要研究人员的结果,表明唯一的因式分解是可能的,在温和的条件下,如果采用体积最小化标准。这些条件比现有方法所需的条件要现实得多,这表明,只要能够有效地解决相关的优化、鲁棒性和可扩展性挑战,就可以实现更具挑战性的场景,甚至是新的应用领域。这项研究将为这些令人兴奋的发展提供计算基础。高性能体积最小化软件将公开发布,以使研究人员和从业者能够解决新问题、处理更大的数据集并提高高光谱成像等现有应用的性能。在教育方面,该项目将帮助培养尖端计算工程研究的研究生,并通过高级荣誉项目帮助吸引有才华的本科生,向他们介绍研究和出版机会。 在理论和方法方面,基于体积最小化的矩阵分解的关键方面仍然知之甚少。这项研究将提供一套高性能的计算工具,这些工具植根于对原始体积最小化标准的优点和缺点的深刻理解,这些标准有望带来令人兴奋的发现。 该研究将沿着以下协同目标发展:i)用于体积最小化的鲁棒优化算法; ii)用于在线体积最小化的可扩展和自适应算法; iii)使用现有的验证(例如,高光谱成像)以及有前途的新的(例如,文档聚类)应用;和iv)体积最小化公式的理论方面,侧重于基本原理,例如可识别性和性能界限。设计可扩展的体积最小化算法对于涉及快速增加的数据量的现代感测和聚类问题具有重要意义。从应用的角度来看,频谱感知,信道识别和文档聚类的体积最小化是全新的和具有挑战性的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nikolaos Sidiropoulos其他文献

EXISTENCE OF SOLUTIONS TO INDEFINITE QUASILINEAR ELLIPTIC PROBLEMS OF P-Q-LAPLACIAN TYPE
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nikolaos Sidiropoulos
  • 通讯作者:
    Nikolaos Sidiropoulos

Nikolaos Sidiropoulos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nikolaos Sidiropoulos', 18)}}的其他基金

Blind Carbon Copy on Dirty Paper: Seamless Spectrum Underlay made Practical
脏纸上的盲文复写:无缝频谱底层变得实用
  • 批准号:
    2118002
  • 财政年份:
    2021
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
III: Small: A Submodular Framework for Scalable Graph Matching with Performance Guarantees
III:小型:具有性能保证的可扩展图匹配的子模块框架
  • 批准号:
    1908070
  • 财政年份:
    2019
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Multimodal Sensing and Analytics at Scale: Algorithms and Applications
协作研究:大规模多模态传感和分析:算法和应用
  • 批准号:
    1807660
  • 财政年份:
    2018
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
Robust and Scalable Volume Minimization-based Matrix Factorization for Sensing and Clustering
用于传感和聚类的鲁棒且可扩展的基于体积最小化的矩阵分解
  • 批准号:
    1852831
  • 财政年份:
    2018
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
CIF: Small: Feasible Point Pursuit for Non-convex QCQPs: Algorithms and Signal Processing Applications
CIF:小:非凸 QCQP 的可行点追踪:算法和信号处理应用
  • 批准号:
    1525194
  • 财政年份:
    2015
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
Workshop on Big Data: From Signal Processing to Systems Engineering; to be held at Arlington Virginia, March 21-22, 2013.
大数据研讨会:从信号处理到系统工程;
  • 批准号:
    1327148
  • 财政年份:
    2013
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
BIGDATA: Mid-Scale: DA: Collaborative Research: Big Tensor Mining: Theory, Scalable Algorithms and Applications
BIGDATA:中型:DA:协作研究:大张量挖掘:理论、可扩展算法和应用
  • 批准号:
    1247632
  • 财政年份:
    2012
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
Wideband cognitive sensing from a few bits
来自几个比特的宽带认知感知
  • 批准号:
    1231504
  • 财政年份:
    2012
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
Spectral Tweets: A Community Paradigm for Spatio-temporal Cognitive Sensing and Access
频谱推文:时空认知感知和访问的社区范式
  • 批准号:
    1247885
  • 财政年份:
    2012
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
From Medium Access to Physical Layer: An Integrated DSP Framework for Wireless Packet Networks
从介质访问到物理层:无线分组网络的集成 DSP 框架
  • 批准号:
    0096164
  • 财政年份:
    2000
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
  • 批准号:
    MR/Y011686/1
  • 财政年份:
    2025
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Fellowship
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
  • 批准号:
    10086990
  • 财政年份:
    2024
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Collaborative R&D
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Studentship
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
  • 批准号:
    2319913
  • 财政年份:
    2024
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
  • 批准号:
    2340453
  • 财政年份:
    2024
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
  • 批准号:
    2332891
  • 财政年份:
    2024
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
SBIR Phase I: Scalable Magnetically-Geared Modular Space Manipulator for In-space Manufacturing and Active Debris Remediation Missions
SBIR 第一阶段:用于太空制造和主动碎片修复任务的可扩展磁力齿轮模块化空间操纵器
  • 批准号:
    2335583
  • 财政年份:
    2024
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
CC* Networking Infrastructure: Building a Scalable and Polymorphic Cyberinfrastructure for Diverse Research and Education Needs at Illinois State University
CC* 网络基础设施:为伊利诺伊州立大学的多样化研究和教育需求构建可扩展和多态的网络基础设施
  • 批准号:
    2346712
  • 财政年份:
    2024
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了