OP Collaborative Research: Taking lithium-niobate to the nanoscale: shaping revolutionary material onto photonic microchips for developing next-generation light sources

OP 合作研究:将铌酸锂提升到纳米级:将革命性材料塑造到光子微芯片上,用于开发下一代光源

基本信息

  • 批准号:
    1609688
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Abstract title: OP Collaborative Research: Taking lithium-niobate to the nanoscale: shaping revolutionary material onto photonic microchips for developing next-generation light sourcesAbstract (general): Lithium-niobate is a revolutionary material that has played a major role in transforming optical telecommunications. It has enabled electronic data (0s and 1s) to be directly written onto light pulses that travel the globe and essentially form the backbone of the internet. It is also used to change the color of light emitted by lasers, of importance for high-speed computing and sensing, as well as to enable realization of novel quantum sources of light that may enable next-generation ultra-secure optical communications. However, currently the performance of lithium-niobate based optical devices is limited by their bulky size. This project aims to miniaturize these to the nanoscale by patterning lithium-niobate onto a photonic microchip, thereby enhancing their efficiency many-fold. This will enable the design of novel light sources with greatly improved properties compared to current technology and also significantly reduce the optical power requirements. The proposed research program is a natural template for informing students, teachers, and the public of how scientists and engineers explore the unique behavior of materials at the nanoscale, and make use of these properties in the creation of new devices. The team will leverage the "magic" of optics and lasers to engage a wide audience and inform the public of their ongoing research. The program has strong theoretical and experimental components and addresses both fundamental and engineering aspects of light-generation in nanoscale optical devices and systems. Therefore, it represents a unique research and educational opportunity for students at all levels. The devices and systems that will be developed will be of great interest to both the scientific community and commercial industry.Abstract (technical): Lithium-niobate, with its large second-order susceptibility, relatively large refractive index and wide transmission window extending from ultra-violet to mid-infrared, is one of the most important optoelectronic materials, widely used for electro-optic modulation and classical & quantum optical frequency conversion. However, due to difficulties associated with fabrication, most of these components are discrete and cannot be easily integrated onto a photonic microchip. Fortunately, recent advances in lithium-niobate thin-film fabrication techniques, via crystal ion slicing, are promising and enable chip-scale integration of nanophotonic devices. The proposed program builds on these results and seeks to develop an integrated nonlinear nanophotonics platform that combines the unique material properties of periodically-poled lithium-niobate with the superior light confinement and dispersion engineering in wavelength-scale optical waveguides and cavities. The new platform will be developed based on thin x-cut lithium-niobate device layers (~500-nm thick) bonded on top of a SiO2 substrate that provides optical isolation. The team will develop new techniques for surface poling of thin x-cut lithium-niobate films, thus allowing for efficient phase matching. State of the art nanofabrication techniques will be used to realize optical waveguides and cavities directly in the periodically-poled device layer. The devices will operate over a wide wavelength range (visible to mid-infrared) and enable strong photon interactions resulting in 40-fold more efficient nonlinear processes than those found in conventional counterparts. The program is expected to result in a wide variety of integrated devices and systems with applications in quantum frequency conversion, entangled-photon pair generation, supercontinuum generation, and frequency comb generation. The proposed program is transformative since it introduces lithium-niobate into the family of materials suitable for integrated, on-chip photonics. It will result in the development of a wide range of novel & more efficient nonlinear optical devices & systems, and make an impact on disciplines as diverse as quantum information science & technology, remote sensing, astronomy and optoelectronics.
摘要(一般):铌酸锂是一种革命性的材料,在改变光通信方面发挥了重要作用。它使电子数据(0和15)可以直接写入光脉冲上,光脉冲在全球传播,基本上构成了互联网的主干。它还用于改变激光发出的光的颜色,这对高速计算和传感很重要,也可以实现可能实现下一代超安全光通信的新型量子光源。然而,目前基于铌酸锂的光学器件的性能受到其庞大尺寸的限制。该项目旨在通过将铌酸锂贴合到光子微芯片上,从而将其缩小到纳米级,从而将其效率提高许多倍。与目前的技术相比,这将使新型光源的设计性能大大提高,并显著降低光功率要求。拟议的研究计划是一个自然的模板,告诉学生、教师和公众科学家和工程师如何在纳米尺度上探索材料的独特行为,并利用这些特性来创造新设备。该团队将利用光学和激光的“魔力”来吸引广泛的观众,并向公众通报他们正在进行的研究。该计划具有强大的理论和实验组成部分,并解决了纳米级光学器件和系统中产生光的基础和工程方面的问题。因此,它为各级学生提供了独特的研究和教育机会。即将开发的设备和系统将引起科学界和商业行业的极大兴趣。摘要(技术):铌酸锂具有较大的二阶磁化率、较大的折射率和从紫外到中红外的宽透射窗口,是最重要的光电材料之一,广泛应用于电光调制和经典量子光学频率转换。然而,由于制造上的困难,这些元件大多是离散的,不能轻易地集成到光子微芯片上。幸运的是,通过晶体离子切片,铌酸锂薄膜制造技术的最新进展是有希望的,并使纳米光子器件的芯片级集成成为可能。该计划建立在这些结果的基础上,旨在开发一个集成的非线性纳米光子学平台,该平台将周期性极化铌酸锂的独特材料特性与波长尺度光波导和腔中的优越光约束和色散工程相结合。新平台将基于x切割薄铌酸锂器件层(~500纳米厚),结合在提供光学隔离的SiO2衬底上。该团队将开发x-cut薄铌酸锂薄膜表面极化的新技术,从而实现有效的相匹配。最先进的纳米制造技术将被用于直接在周期性极化器件层中实现光波导和光腔。该装置将在较宽的波长范围内工作(可见光到中红外),并使强光子相互作用产生比传统同类产品效率高40倍的非线性过程。该计划预计将产生各种集成器件和系统,应用于量子频率转换、纠缠光子对生成、超连续统生成和频率梳生成。拟议的计划具有变革性,因为它将铌酸锂引入了适合集成芯片上光子学的材料家族。它将导致一系列新型、更高效的非线性光学器件和系统的发展,并对量子信息科学技术、遥感、天文学和光电子学等多种学科产生影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Fejer其他文献

Thin-film lithium niobate waveguides for quantum photonics
用于量子光子学的薄膜铌酸锂波导
  • DOI:
    10.1117/12.3010002
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Martin Fejer
  • 通讯作者:
    Martin Fejer
“Quasi-static” quasi-phasematched nonlinear nanophotonics: How few photons, how few cycles?
“准静态”准相位匹配非线性纳米光子学:多少光子,多少周期?
Non-equilibrium phase transitions in coupled nonlinear optical resonators
耦合非线性光学谐振器中的非平衡相变
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arkadev Roy;Rajveer Nehra;C. Langrock;Martin Fejer;A. Marandi
  • 通讯作者:
    A. Marandi

Martin Fejer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Fejer', 18)}}的其他基金

Collaborative Research: Stanford-Florida Program in Support of LIGO on Coatings and Core Optics
合作研究:斯坦福-佛罗里达计划支持 LIGO 涂层和核心光学器件
  • 批准号:
    2309086
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Center for Coatings Research
合作研究:涂料研究中心
  • 批准号:
    2309289
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
High Throughput Structure Determination for Low Thermal Noise Coatings
低热噪声涂层的高通量结构测定
  • 批准号:
    2011782
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Stanford-Florida Program in Support of LIGO on Coatings and Core Optics
合作研究:斯坦福-佛罗里达计划支持 LIGO 涂层和核心光学器件
  • 批准号:
    2011571
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: LSC Center for Coatings Research
合作研究:LSC 涂料研究中心
  • 批准号:
    2011706
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
DFG/NSF: Novel Low Loss Coatings-Enabling the Third Generation of Gravitational-Wave Detectors
DFG/NSF:新型低损耗涂层——实现第三代引力波探测器
  • 批准号:
    1758669
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Stanford-Florida program in Support of LIGO on Coatings and Core Optics
合作研究:斯坦福大学-佛罗里达州支持 LIGO 涂层和核心光学器件的项目
  • 批准号:
    1707866
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: LSC Center for Coatings Research
合作研究:LSC 涂料研究中心
  • 批准号:
    1708175
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Squeezed-Light Generation by Means of Traveling X^(2) Interactions in Lithium Niobate Waveguides
通过铌酸锂波导中 X^(2) 行进相互作用产生压缩光
  • 批准号:
    9903156
  • 财政年份:
    1999
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Squeezed-light Generation by Means of Traveling-wave X-(2) in Lithium Niobate Waveguides
铌酸锂波导中行波 X-(2) 产生压缩光
  • 批准号:
    9711231
  • 财政年份:
    1998
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
  • 批准号:
    2127235
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
  • 批准号:
    2114312
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
  • 批准号:
    2127331
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
  • 批准号:
    2114304
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Development of Advanced Image Reconstruction Methods for Pre-Clinical Applications of Photoacoustic Computed Tomography
OP:合作研究:光声计算机断层扫描临床前应用的先进图像重建方法的开发
  • 批准号:
    1938702
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
  • 批准号:
    1709601
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Active Speckle Control and Fast Speckle Statistics to Drastically Improve the Contrast Ratio of Exoplanet Direct Imaging
OP:协作研究:主动散斑控制和快速散斑统计显着提高系外行星直接成像的对比度
  • 批准号:
    1710514
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Novel Feature-Based, Randomized Methods for Large-Scale Inversion
OP:协作研究:用于大规模反演的基于特征的新颖随机方法
  • 批准号:
    1720291
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Compatible Discretizations for Maxwell Models in Nonlinear Optics
OP:协作研究:非线性光学中麦克斯韦模型的兼容离散化
  • 批准号:
    1720116
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
  • 批准号:
    1709275
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了