Collaborative Research: Approximate Computing on Real World Data Using Representation and Coding
协作研究:使用表示和编码对现实世界数据进行近似计算
基本信息
- 批准号:1609823
- 负责人:
- 金额:$ 38.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The diminishing benefits from traditional transistor scaling has coincided with an overwhelming increase in the rate of data generation. Expert analyses show that in 2011, the amount of generated data surpassed 1.8 zeta bytes and will increase by a factor of 50 until 2020. To overcome these challenges, both the semiconductor industry and the research community are exploring new avenues in computing. Two of the promising approaches are acceleration and approximation. Among accelerators, Graphic Processing Units provide significant compute capabilities. Graphic Processing Units, originally designed to accelerate graphics functions, now are processing large amounts of real-world data that are collected from sensors, radar, environment, financial markets, and medical devices. As Graphic Processing Units play a major role in accelerating many classes of applications, improving their performance and energy efficiency has become imperative. This project leverages the fact that many applications that benefit from Graphic Processing Units are amenable to imprecise computation. This characteristic provides an opportunity to devise approximation techniques that trade small losses in the output quality for significant gains in performance and energy efficiency. This project aims to exploit this opportunity and develop a comprehensive framework for approximation in Graphic Processing Units along with effective quality control mechanisms based on coding theory. Energy efficiency is arguably the biggest challenge of the computing industry. To maintain the nation's economic leadership in this industry, it is vital to develop solutions, such as this project, that address the fundamental challenges of energy-efficient computing. The computing industry has reached an era in which many of the innovative techniques, such as this work, crosses the boundary of multiple disciplines, including computer architecture, information theory, and signal processing. Thus, it is imperative to educate a workforce that not only deeply understands multiple disciples, but also can innovate across their boundaries. This project provides a foundation for such education and research. This project will produce benchmarks, tools and general infrastructure. These artifacts will be made publicly available and will be integrated in the Georgia Tech and Harvard curricula. To transfer these technologies, the principle investigators have established close contacts with several companies. Besides the customary routes academics use to disseminate results, the principle investigator will continue organizing workshops on approximate computing. The principle investigator is also coauthoring a book on approximate computing, which will include results from this project. The investigators are committed to diversity and inclusion of undergraduate, underrepresented, and high school students and are currently mentoring students from all groups that will continue throughout this project. This project will first develop an accelerated architecture for Graphic Processing Units, which leverage an approximate algorithmic transformation for faster and more energy efficient execution. The core idea is to use neural models to learn how a region of code behaves and replace the region with a hardware accelerator that is tightly integrated within the many cores of the Graphic Processing Units. Second, inspired by Shannon's work and the success of random codes in providing reliable communication over noisy channels, this work will devise quality control solutions that utilize coding techniques to reduce the imprecision. The code is implicit in a sense that whenever an approximate output must be improved, its correlation with available exact outputs is exploited for constructing and decoding the code. Third, the project will study mechanisms that leverage the inherent similarity and predictability in the real-world data to address the memory bottlenecks in Graphic Processing Units. The main idea is to predict the values of a data load operation when it misses in the local on-chip cache and continue the computation without waiting for the long-latency response from the off-chip memory. To perform effective prediction, this project will develop multi-regime adaptive nonlinear time-varying dynamical models for the input data using our new theories of model matching.
传统晶体管缩放带来的好处减少的同时,数据生成速度却出现了压倒性的增长。专家分析显示,2011年,生成的数据量超过1.8 Zeta字节,并将在2020年前增长50倍。为了克服这些挑战,半导体行业和研究界都在探索计算领域的新途径。其中两种很有前途的方法是加速和近似。在加速器中,图形处理单元提供了重要的计算能力。最初旨在加速图形功能的图形处理单元,现在正在处理从传感器、雷达、环境、金融市场和医疗设备收集的大量真实世界数据。由于图形处理单元在加速许多类别的应用程序方面发挥着重要作用,因此提高它们的性能和能效已成为当务之急。该项目利用了这样一个事实,即许多受益于图形处理单元的应用程序容易受到不精确计算的影响。这一特性提供了设计近似技术的机会,该技术以输出质量的微小损失换取性能和能源效率的显著提高。这个项目旨在利用这一机会,并开发一个全面的框架,在图形处理单元的近似,以及有效的质量控制机制的基础上编码理论。能效可以说是计算机行业面临的最大挑战。为了保持美国在该行业的经济领导地位,至关重要的是开发解决方案,如该项目,以应对节能计算的根本挑战。计算行业已经到达了一个时代,在这个时代,许多创新技术,如这项工作,跨越了包括计算机体系结构、信息理论和信号处理在内的多个学科的边界。因此,培养一支不仅深刻理解多名门徒,而且能够跨越他们的边界进行创新的员工队伍是当务之急。该项目为此类教育和研究提供了基础。该项目将产生基准、工具和通用基础设施。这些文物将被公开提供,并将被整合到佐治亚理工学院和哈佛大学的课程中。为了转让这些技术,原则调查员已经与几家公司建立了密切联系。除了学者传播成果的惯常途径外,首席调查员还将继续组织关于近似计算的讲习班。这位首席研究员还在合著一本关于近似计算的书,其中将包括这个项目的结果。调查人员致力于本科生、代表性不足的学生和高中生的多样性和包容性,目前正在指导所有群体的学生,这将继续贯穿整个项目。该项目将首先为图形处理单元开发加速体系结构,该体系结构利用近似算法转换以实现更快和更节能的执行。其核心思想是使用神经模型来学习代码区域的行为,并用紧密集成在图形处理单元的多个核心中的硬件加速器取代该区域。其次,受香农的工作和随机码在噪声信道上提供可靠通信的成功的启发,这项工作将设计出利用编码技术来减少不精确度的质量控制解决方案。该码是隐含的,因为每当必须改进近似输出时,就利用其与可用的精确输出的相关性来构造和解码该码。第三,该项目将研究利用真实世界数据中固有的相似性和可预测性来解决图形处理单元中的内存瓶颈的机制。其主要思想是当数据加载操作在本地片上高速缓存中未命中时预测其值,并继续计算,而不等待来自片外存储器的长等待时间响应。为了进行有效的预测,本项目将利用我们新的模型匹配理论,为输入数据开发多区域自适应非线性时变动力学模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Faramarz Fekri其他文献
Delay analysis of two-hop network-coded delay-tolerant networks
两跳网络编码容错网络的时延分析
- DOI:
10.1002/wcm.2379 - 发表时间:
2015-03 - 期刊:
- 影响因子:0
- 作者:
Xingwu Liu;Nima Torabkhani;Faramarz Fekri;Zhang Xiong - 通讯作者:
Zhang Xiong
Analysis of Block Delivery Delay in Network Coding-based Delay Tolerant Networks
基于网络编码的延迟容忍网络中块传送延迟分析
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Juhua Pu;Xingwu Liu;Nima Torabkhani;Faramarz Fekri - 通讯作者:
Faramarz Fekri
Generalization of temporal logic tasks via future dependent options
- DOI:
10.1007/s10994-024-06614-y - 发表时间:
2024-08-26 - 期刊:
- 影响因子:2.900
- 作者:
Duo Xu;Faramarz Fekri - 通讯作者:
Faramarz Fekri
Faramarz Fekri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Faramarz Fekri', 18)}}的其他基金
FET: Small: Methods and Algorithms for microRNA Sensing: Interdependency Discovery and Inverse Problems
FET:小型:microRNA 传感的方法和算法:相互依赖性发现和逆问题
- 批准号:
2007807 - 财政年份:2020
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
MLWiNS: Collaborative Training and Inference at the Wireless Edge for Collective Intelligence
MLWiNS:无线边缘的协作训练和推理以实现集体智能
- 批准号:
2003002 - 财政年份:2020
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
SemiSynBio-II: A Hybrid Programmable Nano-Bioelectronic System
SemiSynBio-II:混合可编程纳米生物电子系统
- 批准号:
2027195 - 财政年份:2020
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
III: Small: Robust and Scalable Reputation Management and Recommender Systems Using Belief Propagation
III:小型:使用信念传播的稳健且可扩展的声誉管理和推荐系统
- 批准号:
1115199 - 财政年份:2011
- 资助金额:
$ 38.3万 - 项目类别:
Continuing Grant
CIF: Small: An Analytical Framework for Comprehensive Study of Intermittently-Connected Mobile Ad-Hoc Networks
CIF:小型:间歇连接移动自组织网络综合研究的分析框架
- 批准号:
0914630 - 财政年份:2009
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
Collaborative Research: Study of Wireless Ad-Hoc and Sensor Networks in a Finite Regime
协作研究:有限范围内无线自组网和传感器网络的研究
- 批准号:
0728772 - 财政年份:2007
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
Low Density Parity Check Coding: Applications and New Challenges
低密度奇偶校验编码:应用和新挑战
- 批准号:
0430964 - 财政年份:2004
- 资助金额:
$ 38.3万 - 项目类别:
Continuing Grant
CAREER: Finite-Field Wavelets for Cryptography and Error Control Coding
职业:用于密码学和错误控制编码的有限场小波
- 批准号:
0093229 - 财政年份:2001
- 资助金额:
$ 38.3万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: OAC: Approximate Nearest Neighbor Similarity Search for Large Polygonal and Trajectory Datasets
合作研究:OAC:大型多边形和轨迹数据集的近似最近邻相似性搜索
- 批准号:
2313039 - 财政年份:2023
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Approximate Coded Computing - Fundamental Limits of Precision, Fault-Tolerance, and Privacy
协作研究:CIF:小型:近似编码计算 - 精度、容错性和隐私的基本限制
- 批准号:
2231706 - 财政年份:2023
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Approximate Coded Computing - Fundamental Limits of Precision, Fault-tolerance and Privacy
协作研究:CIF:小型:近似编码计算 - 精度、容错性和隐私的基本限制
- 批准号:
2231707 - 财政年份:2023
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
Collaborative Research: Towards the Foundation of Approximate Sampling-Based Exploration in Sequential Decision Making
协作研究:为顺序决策中基于近似采样的探索奠定基础
- 批准号:
2323113 - 财政年份:2023
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
Collaborative Research: Towards the Foundation of Approximate Sampling-Based Exploration in Sequential Decision Making
协作研究:为顺序决策中基于近似采样的探索奠定基础
- 批准号:
2323112 - 财政年份:2023
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
Collaborative Research: OAC: Approximate Nearest Neighbor Similarity Search for Large Polygonal and Trajectory Datasets
合作研究:OAC:大型多边形和轨迹数据集的近似最近邻相似性搜索
- 批准号:
2313040 - 财政年份:2023
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
Collaborative Research: OAC: Approximate Nearest Neighbor Similarity Search for Large Polygonal and Trajectory Datasets
合作研究:OAC:大型多边形和轨迹数据集的近似最近邻相似性搜索
- 批准号:
2344585 - 财政年份:2023
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
Collaborative Research: Machine Learning-assisted Modeling and Design of Approximate Computing with Generalizability and Interpretability
协作研究:机器学习辅助建模和具有通用性和可解释性的近似计算设计
- 批准号:
2202310 - 财政年份:2022
- 资助金额:
$ 38.3万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Approximate Computing for Machine Learning Security: Foundations and Accelerator Design
协作研究:SHF:媒介:机器学习安全的近似计算:基础和加速器设计
- 批准号:
2212426 - 财政年份:2022
- 资助金额:
$ 38.3万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Approximate Computing for Machine Learning Security: Foundations and Accelerator Design
协作研究:SHF:媒介:机器学习安全的近似计算:基础和加速器设计
- 批准号:
2212427 - 财政年份:2022
- 资助金额:
$ 38.3万 - 项目类别:
Continuing Grant