CAREER: Finite-Field Wavelets for Cryptography and Error Control Coding
职业:用于密码学和错误控制编码的有限场小波
基本信息
- 批准号:0093229
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Finite-Field Wavelets for Cryptography and Error-Control CodingFaramarz Fekri Today's success is increasingly dependent on being able to access, share and use information whenever and wherever needed. The widespread availability and transmission of such information demands new approaches to cryptography and error-control coding. Notions of complexity, scalability, and adaptability are becoming critical challenges for error-control coding and data security. This research explores wavelet transform over finite fields and their applications to convolutional coding and data security. It investigates a rich set of signal processing techniques that can be exploited for the construction of new coding and security schemes. The research is not evolutionary. It defines a new research area on the boundary of three very large research fields; namely digital signal processing, communications, and computer science. It impacts 1. basic science, 2. technology and products, and 3. education and learning. This research explores the intersection of finite-field wavelet transforms, error-control coding and data encryption. The primary focus of this research is to advance the study of wavelets and filter banks over finite fields and their applications to error -control coding and data security. It develops the theory of wavelet transforms over finite fields which provides a general wavelet decomposition of sequences defined over finite fields. This is an approach that has a rich history in signal processing for the representation of real-valued signals, but it has been lacking in the finite-field case. In particular, the research explores multiresolution wavelets and overcomplete filter banks over finite fields. Along with wavelet theory on finite fields, this work investigates the first application of the finite-field wavelet theory to new types of time varying convolutional codes that have unusual trellis structures with reduced complexity. Using multiresolution decomposition of wavelets, the researchers intend to construct rate-compatible wavelet convolutional codes for handheld devices to support flexible data rates (voice, fax, video,...). To address security issues with handheld devices, this research exploits the finite-field wavelet as a unifying framework for effective joint design of data encryption and error control coding. In this framework, the public and secret keys of the user determine the wavelet system and the security is tied to the length of the wavelet basis function. The goal of the research is centered around the development of innovative coding/security protocols for handheld devices.
Faramarz Fekri今天的成功越来越依赖于能够随时随地访问、共享和使用信息。 这种信息的广泛可用性和传输需要新的密码学和错误控制编码方法。 复杂性、可扩展性和适应性的概念正在成为差错控制编码和数据安全的关键挑战。 本研究探讨有限域上之小波变换及其在卷积编码与资料保全上之应用。 它研究了一组丰富的信号处理技术,可用于构建新的编码和安全方案。 这项研究不是进化的。 它定义了一个新的研究领域的边界上的三个非常大的研究领域,即数字信号处理,通信和计算机科学。 影响1。基础科学2技术和产品,3。教育和学习。 本研究探讨有限域小波变换、错误控制编码与资料加密的交集。 本研究的主要焦点是推进有限域上小波和滤波器组的研究及其在差错控制编码和数据安全中的应用。 它发展了有限域上的小波变换理论,提供了有限域上定义的序列的一般小波分解。 这是一种在信号处理中具有丰富历史的方法,用于表示实值信号,但它在有限域情况下一直缺乏。 特别是,研究探讨了有限域上的多分辨率小波和过完备滤波器组。 沿着有限域上的小波理论,这项工作研究了有限域小波理论的第一个应用程序的新类型的时变卷积码,具有不寻常的网格结构,降低了复杂性。 利用小波的多分辨率分解,研究人员打算为手持设备构建速率兼容的小波卷积码,以支持灵活的数据速率(语音,传真,视频等)。 为了解决手持设备的安全问题,本研究利用有限域小波作为一个统一的框架,有效的联合设计的数据加密和错误控制编码。 在该框架中,用户的公钥和私钥决定了小波系统,安全性与小波基函数的长度有关。 该研究的目标是围绕手持设备的创新编码/安全协议的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Faramarz Fekri其他文献
Delay analysis of two-hop network-coded delay-tolerant networks
两跳网络编码容错网络的时延分析
- DOI:
10.1002/wcm.2379 - 发表时间:
2015-03 - 期刊:
- 影响因子:0
- 作者:
Xingwu Liu;Nima Torabkhani;Faramarz Fekri;Zhang Xiong - 通讯作者:
Zhang Xiong
Analysis of Block Delivery Delay in Network Coding-based Delay Tolerant Networks
基于网络编码的延迟容忍网络中块传送延迟分析
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Juhua Pu;Xingwu Liu;Nima Torabkhani;Faramarz Fekri - 通讯作者:
Faramarz Fekri
Generalization of temporal logic tasks via future dependent options
- DOI:
10.1007/s10994-024-06614-y - 发表时间:
2024-08-26 - 期刊:
- 影响因子:2.900
- 作者:
Duo Xu;Faramarz Fekri - 通讯作者:
Faramarz Fekri
Faramarz Fekri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Faramarz Fekri', 18)}}的其他基金
FET: Small: Methods and Algorithms for microRNA Sensing: Interdependency Discovery and Inverse Problems
FET:小型:microRNA 传感的方法和算法:相互依赖性发现和逆问题
- 批准号:
2007807 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
MLWiNS: Collaborative Training and Inference at the Wireless Edge for Collective Intelligence
MLWiNS:无线边缘的协作训练和推理以实现集体智能
- 批准号:
2003002 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SemiSynBio-II: A Hybrid Programmable Nano-Bioelectronic System
SemiSynBio-II:混合可编程纳米生物电子系统
- 批准号:
2027195 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Approximate Computing on Real World Data Using Representation and Coding
协作研究:使用表示和编码对现实世界数据进行近似计算
- 批准号:
1609823 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
III: Small: Robust and Scalable Reputation Management and Recommender Systems Using Belief Propagation
III:小型:使用信念传播的稳健且可扩展的声誉管理和推荐系统
- 批准号:
1115199 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CIF: Small: An Analytical Framework for Comprehensive Study of Intermittently-Connected Mobile Ad-Hoc Networks
CIF:小型:间歇连接移动自组织网络综合研究的分析框架
- 批准号:
0914630 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Study of Wireless Ad-Hoc and Sensor Networks in a Finite Regime
协作研究:有限范围内无线自组网和传感器网络的研究
- 批准号:
0728772 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Low Density Parity Check Coding: Applications and New Challenges
低密度奇偶校验编码:应用和新挑战
- 批准号:
0430964 - 财政年份:2004
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Further extension of the distribution theory of covariance matrices on finite dimensional field
有限维域上协方差矩阵分布理论的进一步推广
- 批准号:
23K11016 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of large-scale finite element electromagnetic field analysis using a high-precision human body model in a 5G environment
5G环境下高精度人体模型建立大规模有限元电磁场分析
- 批准号:
23K16893 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of High-Performance Finite-Difference Based Computational Models for Electromagnetic Field Assessment
开发基于有限差分的高性能电磁场评估计算模型
- 批准号:
568474-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Postdoctoral Fellowships
Mesoscale finite element phase field modelling of liquid lithium corrosion of steels
钢液锂腐蚀的介观有限元相场建模
- 批准号:
2764612 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Studentship
Enumeration of polynomials with prescribed coefficients over a finite field
有限域上具有指定系数的多项式的枚举
- 批准号:
564118-2021 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
University Undergraduate Student Research Awards
Investigating strongly interacting Quantum Field Theories at finite density via holography
通过全息术研究有限密度下的强相互作用量子场论
- 批准号:
2601854 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Studentship
Finite-Element Simulation of Homogenised Field Models for Foil Windings
箔绕组均匀场模型的有限元仿真
- 批准号:
436819664 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Research Grants
Finite Temperature Effective Quantum Field Theory in Curved Spacetime
弯曲时空有限温度有效量子场论
- 批准号:
518804-2018 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Postgraduate Scholarships - Doctoral
Some enumerative results on polynomials over a finite field
有限域上多项式的一些枚举结果
- 批准号:
551667-2020 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
University Undergraduate Student Research Awards
Enumeration of irreducible polynomials over a finite field with prescribed coefficients
具有规定系数的有限域上不可约多项式的枚举
- 批准号:
542334-2019 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
University Undergraduate Student Research Awards