First-Principles Investigation of Energy Transport within Highly Ordered Organic Molecular Arrays

高度有序有机分子阵列内能量传输的第一性原理研究

基本信息

  • 批准号:
    1610031
  • 负责人:
  • 金额:
    $ 28.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThe CMMT Program of the Division of Materials Research, and the CTMC Program of Division of Chemistry jointly fund this award on research and education in energy transport in organic molecular arrays based on first-principles calculations. Solar energy conversion, i.e. harnessing solar energy and converting it to electricity or chemical energy, is a promising technology for addressing the challenges associated with the projected future growth in energy needs. This technology requires new materials, designed specifically to create more efficient and inexpensive devices for solar energy conversion. This project focuses on organic materials, composed of assemblies of carbon-based molecules, a particularly promising class of materials for such applications. In contrast to the traditional inorganic materials used in solar energy conversion devices, organic materials are low in cost, abundant, and extensively tunable by virtue of the mature field of synthetic organic chemistry. To utilize and improve these materials for solar energy conversion, it is necessary to understand their fundamental properties; however, this understanding is hindered by the challenges in characterizing the behavior of electrons, both experimentally and theoretically, at nanometer length scales. By utilizing and developing state-of-the-art simulation methods, the PI and her research team will investigate the fundamental properties that govern the interaction of light with assemblies of organic molecules, and elucidate the factors critical to the design of advanced solar energy conversion materials. This project will disseminate the knowledge gained through numerous channels: i) The developments made to the simulation methods will be made publicly available through the computational tool BerkeleyGW on nanoHub.org. Nanohub is a website created by the National Science Foundation Network for Computational Nanotechnology, that allows experts in nanotechnology-related fields to share knowledge and simulation tools. ii) In collaboration with the Boston University (BU) Technology Innovation Scholars Program, where undergraduate students interested in becoming teachers will contribute to teaching at diverse high schools throughout the Boston area, lesson plans will be developed that incorporate the applicability of the research to solar energy conversion. iii) In collaboration with the BU Outreach and Diversity Program, an animated tutorial aimed at younger students will be developed and broadcast on the BU YouTube channel. TECHNICAL SUMMARYThe CMMT Program of the Division of Materials Research, and the CTMC Program of the Division of Chemistry jointly fund this award on research and education in energy transport in organic molecular arrays based on first-principles calculations. The intent of this research is to aid in the design of new organic molecular assemblies for solar energy conversion. Organic materials are a highly tunable class of optically active materials that are promising for photovoltaics and artificial photosynthesis. To make organic materials in such applications feasible requires an intuitive understanding of how to improve the efficiency and lifetime of the component materials. Moreover, the vast space of realizable organic molecular systems afforded by the maturity of the field of organic synthesis provides a great opportunity to both explore new physical phenomena and design novel materials. Theoretical approaches are necessary to develop deeper physical intuition about the optoelectronic properties of these materials in order to advance the technology. This project focuses on the role of long-range order on the optical and electronic properties of recently synthesized perylene diimide molecular arrays. The PI and research team will employ first-principles electronic structure theory to better understand how optically excited states within ordered organic assemblies can be controlled to deliver improved photovoltaic and photocatalytic efficiency. This project addresses a key, unanswered question related to energy transport within molecular assemblies: what is the role of inter-molecular interactions on the evolution of the excited-state? The determination of structure-property relationships is critical for design of new molecules; this study will quantify aspects of inter-molecular interactions and electronic structure, such as the interplay between electron-phonon and electron-electron interactions, enabling their application to molecular design. This approach is unique in that the first-principles calculations focus on extended systems, where long-range interactions play a significant role on the nature of excitations. Additionally, this work will develop new computational methodology for probing the role of electron-phonon interactions, which are very difficult to characterize for extended systems. Experimental collaborators will test the predications using their unique synthetic technologies, validating and improving upon the computational approach, and thereby increasing the impact of this research. The ultimate aim of this research to provide new design rules to efficiently direct optical excitations along molecular nanowires that will be synthesized.This project will disseminate the knowledge gained through numerous channels: i) The developments made to the simulation methods will be made publicly available through the computational tool BerkeleyGW on nanoHub.org. Nanohub is a website created by the National Science Foundation Network for Computational Nanotechnology, that allows experts in nanotechnology-related fields to share knowledge and simulation tools. ii) In collaboration with the Boston University (BU) Technology Innovation Scholars Program, where undergraduate students interested in becoming teachers will contribute to teaching at diverse high schools throughout the Boston area, lesson plans will be developed that incorporate the applicability of the research to solar energy conversion. iii) In collaboration with the BU Outreach and Diversity Program, an animated tutorial aimed at younger students will be developed and broadcast on the BU YouTube channel.
非技术摘要材料研究部的 CMMT 计划和化学部的 CTMC 计划共同资助该奖项,用于基于第一性原理计算的有机分子阵列能量传输的研究和教育。太阳能转换,即利用太阳能并将其转换为电能或化学能,是解决与预计未来能源需求增长相关的挑战的一项有前途的技术。这项技术需要新材料,专门用于制造更高效、更便宜的太阳能转换设备。该项目重点研究由碳基分子组装体组成的有机材料,这是此类应用中特别有前途的一类材料。与太阳能转换器件中使用的传统无机材料相比,有机材料凭借合成有机化学领域的成熟,成本低廉、丰富且可广泛调节。为了利用和改进这些材料进行太阳能转换,有必要了解它们的基本特性;然而,这种理解受到了在纳米长度尺度上从实验和理论上表征电子行为的挑战的阻碍。通过利用和开发最先进的模拟方法,首席研究员和她的研究团队将研究控制光与有机分子组装体相互作用的基本特性,并阐明对先进太阳能转换材料设计的关键因素。该项目将传播通过多种渠道获得的知识: i) 模拟方法的开发将通过 nanoHub.org 上的计算工具 BerkeleyGW 公开发布。 Nanohub 是由国家科学基金会计算纳米技术网络创建的网站,允许纳米技术相关领域的专家分享知识和模拟工具。 ii) 与波士顿大学 (BU) 技术创新学者计划合作,有兴趣成为教师的本科生将为整个波士顿地区不同高中的教学做出贡献,并将制定课程计划,其中纳入研究对太阳能转换的适用性。 iii) 与 BU 外展和多元化计划合作,将开发针对低年级学生的动画教程并在 BU YouTube 频道上播出。技术摘要材料研究部的 CMMT 计划和化学部的 CTMC 计划共同资助该奖项,用于基于第一性原理计算的有机分子阵列能量传输的研究和教育。这项研究的目的是帮助设计用于太阳能转换的新型有机分子组件。有机材料是一类高度可调的光学活性材料,在光伏和人工光合作用方面具有广阔的前景。为了使有机材料在此类应用中可行,需要直观地了解如何提高组件材料的效率和寿命。此外,有机合成领域的成熟提供了可实现的有机分子系统的广阔空间,为探索新物理现象和设计新材料提供了绝佳的机会。为了推进技术发展,需要理论方法来发展对这些材料光电特性的更深入的物理直觉。该项目重点研究长程有序对最近合成的苝二酰亚胺分子阵列的光学和电子特性的作用。 PI和研究团队将采用第一原理电子结构理论来更好地理解如何控制有序有机组件中的光学激发态,以提高光伏和光催化效率。该项目解决了与分子组装内能量传输相关的一个关键的、尚未解答的问题:分子间相互作用对激发态演化的作用是什么?结构-性质关系的确定对于新分子的设计至关重要;这项研究将量化分子间相互作用和电子结构的各个方面,例如电子-声子和电子-电子相互作用之间的相互作用,使其能够应用于分子设计。这种方法的独特之处在于,第一性原理计算侧重于扩展系统,其中长程相互作用对激发的性质起着重要作用。此外,这项工作将开发新的计算方法来探测电子-声子相互作用的作用,这对于扩展系统来说很难表征。实验合作者将使用其独特的合成技术来测试预测,验证和改进计算方法,从而增加这项研究的影响。这项研究的最终目标是提供新的设计规则,以便沿着将要合成的分子纳米线有效地引导光学激发。该项目将传播通过多种渠道获得的知识:i)模拟方法的开发将通过 nanoHub.org 上的计算工具 BerkeleyGW 公开发布。 Nanohub 是由国家科学基金会计算纳米技术网络创建的网站,允许纳米技术相关领域的专家分享知识和模拟工具。 ii) 与波士顿大学 (BU) 技术创新学者计划合作,有兴趣成为教师的本科生将为整个波士顿地区不同高中的教学做出贡献,并将制定课程计划,其中纳入研究对太阳能转换的适用性。 iii) 与 BU 外展和多元化计划合作,将开发针对低年级学生的动画教程并在 BU YouTube 频道上播出。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sahar Sharifzadeh其他文献

Quantum mechanical modeling of electronic excitations in metal oxides: Magnesia as a prototype
  • DOI:
    10.1016/j.cplett.2011.11.003
  • 发表时间:
    2012-01-05
  • 期刊:
  • 影响因子:
  • 作者:
    Dalal K. Kanan;Sahar Sharifzadeh;Emily A. Carter
  • 通讯作者:
    Emily A. Carter
Interplay of broken symmetry and delocalized excitations in the insulating state of 1T-TaS2
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
  • 作者:
    Xun Jia;Anubhab Haldar;Jungho Kim;Yilin Wang;Gilberto Fabbris;Karl Ludwig;Stefanos Kourtis;Mary Upton;Yu Liu;Wenjian Lu;Xuan Luo;Yu-Ping Sun;Diego Casa;Sahar Sharifzadeh;Pierre T. Darancet;Yue Cao
  • 通讯作者:
    Yue Cao

Sahar Sharifzadeh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sahar Sharifzadeh', 18)}}的其他基金

Conference: Electronic Structure Workshop (ES24)
会议:电子结构研讨会(ES24)
  • 批准号:
    2414597
  • 财政年份:
    2024
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Standard Grant
CAREER: First-Principles Investigation of Energy Transport Within Ordered Organic Assemblies
职业:有序有机组件内能量传输的第一性原理研究
  • 批准号:
    1847774
  • 财政年份:
    2019
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于First Principles的光催化降解PPCPs同步脱氮体系构建及其电子分配机制研究
  • 批准号:
    51778175
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

First-principles investigation on calcium phosphate crystals modified by organic molecules
有机分子修饰磷酸钙晶体的第一性原理研究
  • 批准号:
    21K18818
  • 财政年份:
    2021
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
First principles investigation on optical-control of electronic structure
电子结构光控第一性原理研究
  • 批准号:
    20K14382
  • 财政年份:
    2020
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: First-Principles Investigation of Energy Transport Within Ordered Organic Assemblies
职业:有序有机组件内能量传输的第一性原理研究
  • 批准号:
    1847774
  • 财政年份:
    2019
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Continuing Grant
First principles investigation of the thermal transport properties of quasi-2D materials
准二维材料热传输特性的第一性原理研究
  • 批准号:
    529269-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Van der Waals heterostructures for photovoltaic applications: first-principles investigation of organic molecules interfaced with two-dimensional materials
用于光伏应用的范德华异质结构:与二维材料连接的有机分子的第一性原理研究
  • 批准号:
    406901005
  • 财政年份:
    2018
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Research Grants
Investigation for interaction of matter with extreme pulsed light based on first-principles calculations
基于第一性原理计算研究物质与极端脉冲光的相互作用
  • 批准号:
    15H03674
  • 财政年份:
    2015
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
"Investigation into the dynamics of toxicity using a novel, first-principles based semantic biochemical reactor."
“使用一种新颖的、基于第一原理的语义生化反应器来研究毒性动力学。”
  • 批准号:
    327371-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Discovery Grants Program - Individual
First principles investigation of high ionic conductivity in ionic crystals
离子晶体中高离子电导率的第一性原理研究
  • 批准号:
    24656370
  • 财政年份:
    2012
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Investigation of ionic conduction mechanism of apatite-type fast ionic conductors from first principles
从第一性原理研究磷灰石型快离子导体的离子传导机制
  • 批准号:
    24656382
  • 财政年份:
    2012
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
First principles investigation of the elasticity of serpentine minerals
蛇纹石矿物弹性的第一性原理研究
  • 批准号:
    24740357
  • 财政年份:
    2012
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了