First-Principles Investigation of Energy Transport within Highly Ordered Organic Molecular Arrays

高度有序有机分子阵列内能量传输的第一性原理研究

基本信息

  • 批准号:
    1610031
  • 负责人:
  • 金额:
    $ 28.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThe CMMT Program of the Division of Materials Research, and the CTMC Program of Division of Chemistry jointly fund this award on research and education in energy transport in organic molecular arrays based on first-principles calculations. Solar energy conversion, i.e. harnessing solar energy and converting it to electricity or chemical energy, is a promising technology for addressing the challenges associated with the projected future growth in energy needs. This technology requires new materials, designed specifically to create more efficient and inexpensive devices for solar energy conversion. This project focuses on organic materials, composed of assemblies of carbon-based molecules, a particularly promising class of materials for such applications. In contrast to the traditional inorganic materials used in solar energy conversion devices, organic materials are low in cost, abundant, and extensively tunable by virtue of the mature field of synthetic organic chemistry. To utilize and improve these materials for solar energy conversion, it is necessary to understand their fundamental properties; however, this understanding is hindered by the challenges in characterizing the behavior of electrons, both experimentally and theoretically, at nanometer length scales. By utilizing and developing state-of-the-art simulation methods, the PI and her research team will investigate the fundamental properties that govern the interaction of light with assemblies of organic molecules, and elucidate the factors critical to the design of advanced solar energy conversion materials. This project will disseminate the knowledge gained through numerous channels: i) The developments made to the simulation methods will be made publicly available through the computational tool BerkeleyGW on nanoHub.org. Nanohub is a website created by the National Science Foundation Network for Computational Nanotechnology, that allows experts in nanotechnology-related fields to share knowledge and simulation tools. ii) In collaboration with the Boston University (BU) Technology Innovation Scholars Program, where undergraduate students interested in becoming teachers will contribute to teaching at diverse high schools throughout the Boston area, lesson plans will be developed that incorporate the applicability of the research to solar energy conversion. iii) In collaboration with the BU Outreach and Diversity Program, an animated tutorial aimed at younger students will be developed and broadcast on the BU YouTube channel. TECHNICAL SUMMARYThe CMMT Program of the Division of Materials Research, and the CTMC Program of the Division of Chemistry jointly fund this award on research and education in energy transport in organic molecular arrays based on first-principles calculations. The intent of this research is to aid in the design of new organic molecular assemblies for solar energy conversion. Organic materials are a highly tunable class of optically active materials that are promising for photovoltaics and artificial photosynthesis. To make organic materials in such applications feasible requires an intuitive understanding of how to improve the efficiency and lifetime of the component materials. Moreover, the vast space of realizable organic molecular systems afforded by the maturity of the field of organic synthesis provides a great opportunity to both explore new physical phenomena and design novel materials. Theoretical approaches are necessary to develop deeper physical intuition about the optoelectronic properties of these materials in order to advance the technology. This project focuses on the role of long-range order on the optical and electronic properties of recently synthesized perylene diimide molecular arrays. The PI and research team will employ first-principles electronic structure theory to better understand how optically excited states within ordered organic assemblies can be controlled to deliver improved photovoltaic and photocatalytic efficiency. This project addresses a key, unanswered question related to energy transport within molecular assemblies: what is the role of inter-molecular interactions on the evolution of the excited-state? The determination of structure-property relationships is critical for design of new molecules; this study will quantify aspects of inter-molecular interactions and electronic structure, such as the interplay between electron-phonon and electron-electron interactions, enabling their application to molecular design. This approach is unique in that the first-principles calculations focus on extended systems, where long-range interactions play a significant role on the nature of excitations. Additionally, this work will develop new computational methodology for probing the role of electron-phonon interactions, which are very difficult to characterize for extended systems. Experimental collaborators will test the predications using their unique synthetic technologies, validating and improving upon the computational approach, and thereby increasing the impact of this research. The ultimate aim of this research to provide new design rules to efficiently direct optical excitations along molecular nanowires that will be synthesized.This project will disseminate the knowledge gained through numerous channels: i) The developments made to the simulation methods will be made publicly available through the computational tool BerkeleyGW on nanoHub.org. Nanohub is a website created by the National Science Foundation Network for Computational Nanotechnology, that allows experts in nanotechnology-related fields to share knowledge and simulation tools. ii) In collaboration with the Boston University (BU) Technology Innovation Scholars Program, where undergraduate students interested in becoming teachers will contribute to teaching at diverse high schools throughout the Boston area, lesson plans will be developed that incorporate the applicability of the research to solar energy conversion. iii) In collaboration with the BU Outreach and Diversity Program, an animated tutorial aimed at younger students will be developed and broadcast on the BU YouTube channel.
材料研究部的CTMC项目和化学部的CTMC项目共同资助了基于第一性原理计算的有机分子阵列能量传输的研究和教育。太阳能转换,即利用太阳能并将其转化为电能或化学能,是一项很有前途的技术,可以解决与预计的未来能源需求增长有关的挑战。这项技术需要新的材料,专门设计用于制造更高效、更廉价的太阳能转换设备。这个项目的重点是有机材料,由碳基分子组合而成,这是一类特别有前途的材料。相对于太阳能转换装置中使用的传统无机材料,有机材料具有成本低、储量丰富、可广泛调节等特点,这是合成有机化学领域成熟的成果。为了利用和改进这些材料进行太阳能转换,有必要了解它们的基本性质;然而,这种理解受到在纳米长度尺度上实验和理论上表征电子行为的挑战的阻碍。通过利用和开发最先进的模拟方法,PI和她的研究团队将研究控制光与有机分子组装相互作用的基本特性,并阐明设计先进太阳能转换材料的关键因素。该项目将通过多种渠道传播所获得的知识:i)模拟方法的发展将通过nanoHub.org上的计算工具BerkeleyGW公开提供。Nanohub是由美国国家科学基金会计算纳米技术网络创建的一个网站,它允许纳米技术相关领域的专家分享知识和模拟工具。ii)与波士顿大学(BU)技术创新学者计划合作,有兴趣成为教师的本科生将在整个波士顿地区的不同高中教学,课程计划将被制定,其中包括研究对太阳能转换的适用性。iii)与波士顿大学外展和多样性计划合作,将开发针对年轻学生的动画教程,并在波士顿大学YouTube频道上播出。技术概述:材料研究部的ctmmt项目和化学部的CTMC项目共同资助了该奖项,用于基于第一性原理计算的有机分子阵列能量传输的研究和教育。本研究的目的是帮助设计用于太阳能转换的新型有机分子组件。有机材料是一类高度可调的光学活性材料,在光伏发电和人工光合作用方面前景广阔。为了使有机材料在这种应用中可行,需要对如何提高组成材料的效率和寿命有直观的理解。此外,有机合成领域的成熟为可实现的有机分子体系提供了广阔的空间,为探索新的物理现象和设计新的材料提供了巨大的机会。为了推进该技术,理论方法是必要的,以发展对这些材料光电特性的更深层次的物理直觉。本项目主要研究长程序对最近合成的苝二亚胺分子阵列的光学和电子性质的影响。PI和研究团队将采用第一性原理电子结构理论来更好地理解如何控制有序有机组件中的光学激发态,从而提高光伏和光催化效率。这个项目解决了一个关键的,未解决的问题,与分子组装中的能量传输有关:分子间相互作用在激发态演化中的作用是什么?结构性质关系的确定对新分子的设计至关重要;本研究将量化分子间相互作用和电子结构的各个方面,如电子-声子和电子-电子相互作用之间的相互作用,使其能够应用于分子设计。这种方法的独特之处在于,第一原理计算集中在扩展系统上,在扩展系统中,远程相互作用对激发的性质起着重要作用。此外,这项工作将开发新的计算方法来探测电子-声子相互作用的作用,这在扩展系统中很难表征。实验合作者将使用他们独特的合成技术测试预测,验证和改进计算方法,从而增加本研究的影响。本研究的最终目的是提供新的设计规则,以有效地指导将合成的分子纳米线的光激发。该项目将通过多种渠道传播所获得的知识:i)模拟方法的发展将通过nanoHub.org上的计算工具BerkeleyGW公开提供。Nanohub是由美国国家科学基金会计算纳米技术网络创建的一个网站,它允许纳米技术相关领域的专家分享知识和模拟工具。ii)与波士顿大学(BU)技术创新学者计划合作,有兴趣成为教师的本科生将在整个波士顿地区的不同高中教学,课程计划将被制定,其中包括研究对太阳能转换的适用性。iii)与波士顿大学外展和多样性计划合作,将开发针对年轻学生的动画教程,并在波士顿大学YouTube频道上播出。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sahar Sharifzadeh其他文献

Quantum mechanical modeling of electronic excitations in metal oxides: Magnesia as a prototype
  • DOI:
    10.1016/j.cplett.2011.11.003
  • 发表时间:
    2012-01-05
  • 期刊:
  • 影响因子:
  • 作者:
    Dalal K. Kanan;Sahar Sharifzadeh;Emily A. Carter
  • 通讯作者:
    Emily A. Carter
Interplay of broken symmetry and delocalized excitations in the insulating state of 1T-TaS2
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
  • 作者:
    Xun Jia;Anubhab Haldar;Jungho Kim;Yilin Wang;Gilberto Fabbris;Karl Ludwig;Stefanos Kourtis;Mary Upton;Yu Liu;Wenjian Lu;Xuan Luo;Yu-Ping Sun;Diego Casa;Sahar Sharifzadeh;Pierre T. Darancet;Yue Cao
  • 通讯作者:
    Yue Cao

Sahar Sharifzadeh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sahar Sharifzadeh', 18)}}的其他基金

Conference: Electronic Structure Workshop (ES24)
会议:电子结构研讨会(ES24)
  • 批准号:
    2414597
  • 财政年份:
    2024
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Standard Grant
CAREER: First-Principles Investigation of Energy Transport Within Ordered Organic Assemblies
职业:有序有机组件内能量传输的第一性原理研究
  • 批准号:
    1847774
  • 财政年份:
    2019
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于First Principles的光催化降解PPCPs同步脱氮体系构建及其电子分配机制研究
  • 批准号:
    51778175
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

First-principles investigation on calcium phosphate crystals modified by organic molecules
有机分子修饰磷酸钙晶体的第一性原理研究
  • 批准号:
    21K18818
  • 财政年份:
    2021
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
First principles investigation on optical-control of electronic structure
电子结构光控第一性原理研究
  • 批准号:
    20K14382
  • 财政年份:
    2020
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: First-Principles Investigation of Energy Transport Within Ordered Organic Assemblies
职业:有序有机组件内能量传输的第一性原理研究
  • 批准号:
    1847774
  • 财政年份:
    2019
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Continuing Grant
First principles investigation of the thermal transport properties of quasi-2D materials
准二维材料热传输特性的第一性原理研究
  • 批准号:
    529269-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Van der Waals heterostructures for photovoltaic applications: first-principles investigation of organic molecules interfaced with two-dimensional materials
用于光伏应用的范德华异质结构:与二维材料连接的有机分子的第一性原理研究
  • 批准号:
    406901005
  • 财政年份:
    2018
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Research Grants
Investigation for interaction of matter with extreme pulsed light based on first-principles calculations
基于第一性原理计算研究物质与极端脉冲光的相互作用
  • 批准号:
    15H03674
  • 财政年份:
    2015
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
"Investigation into the dynamics of toxicity using a novel, first-principles based semantic biochemical reactor."
“使用一种新颖的、基于第一原理的语义生化反应器来研究毒性动力学。”
  • 批准号:
    327371-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Discovery Grants Program - Individual
First principles investigation of high ionic conductivity in ionic crystals
离子晶体中高离子电导率的第一性原理研究
  • 批准号:
    24656370
  • 财政年份:
    2012
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Investigation of ionic conduction mechanism of apatite-type fast ionic conductors from first principles
从第一性原理研究磷灰石型快离子导体的离子传导机制
  • 批准号:
    24656382
  • 财政年份:
    2012
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
First principles investigation of the elasticity of serpentine minerals
蛇纹石矿物弹性的第一性原理研究
  • 批准号:
    24740357
  • 财政年份:
    2012
  • 资助金额:
    $ 28.38万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了