CAREER: First-Principles Investigation of Energy Transport Within Ordered Organic Assemblies

职业:有序有机组件内能量传输的第一性原理研究

基本信息

  • 批准号:
    1847774
  • 负责人:
  • 金额:
    $ 54.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis CAREER award supports computational research and education focused on understanding the interaction of light with ordered assemblies of carbon-based organic molecules, with the goal of realizing advanced solar energy conversion materials. Solar energy conversion refers to the process of harnessing light from the sun and converting it to electricity or chemical energy; this is a promising technology for addressing the challenges associated with the projected future growth in energy needs. This technology requires new materials, designed specifically to achieve more efficient and inexpensive solar energy conversion devices. In contrast to the traditional inorganic materials used in solar energy conversion devices, organic materials are abundant, and their properties can be extensively tuned using techniques of synthetic organic chemistry. The PI will utilize advanced computer simulation techniques to investigate how electrons within organic assemblies respond to light and develop physically intuitive models of the influence of molecular structure on electronic properties. The goal of this research is to use computer simulation to discover new rules to design organic assemblies that can convert solar energy efficiently.This project will integrate education and outreach with research through numerous channels. The PI will incorporate simulation methods developed in this research project into the graduate level course "Computational Materials Science". In collaboration with the Boston University Technology Innovation Scholars Program, where undergraduate students interested in becoming teachers will contribute to teaching at diverse high schools throughout the Boston area, lesson plans will be developed that incorporate the applicability of the research to solar energy conversion. Together with the research team, the PI will participate in the Boston University U-Design program, introducing middle school age kids to computational science by means of design projects. In collaboration with the BU Outreach and Diversity Program, the research team will deploy activity kits to museums across the world, introducing the scientific concepts to the broader community. TECHNICAL SUMMARYThis CAREER award supports computational research and education aimed at developing a physically intuitive understanding of optical excitations and energy transfer within organic assemblies. Organic materials are a highly tunable class of optically active materials that are promising for photovoltaics and artificial photosynthesis. The field of organic chemistry can synthesize molecular assemblies with a great degree of precision; however, understanding needed to design these systems for efficient energy transfer is lacking. Theory and computation will be used to develop a deeper physical intuition about the excited-states of organic materials. This project focuses on the role of long-range order on the optical properties of organic molecules in the condensed phase. The PI and research team will employ first-principles electronic structure theory to better understand how optically excited states within ordered organic assemblies can be controlled to deliver improved photovoltaic and photocatalytic efficiency. The determination of structure-property relationships is critical for the design of new molecules; the PI and her research team will quantify aspects of the optically excited state, such as the interaction of excitons with phonons, which significantly impacts energy transfer and conversion but is challenging to understand and quantify. Furthermore, these studies will shed light on the behavior of electron-hole pairs in systems where excitonic effects are strong. Additionally, new computational methodology will be developed for probing the role of electron-phonon interactions, which are very difficult to characterize in extended systems. Feedback from experimental collaborators aiming to validate the predictions will be used to improve the computational approach, and thereby increasing the impact of this research. The ultimate result of this research will be to provide new design rules to enable the development of organic materials that can efficiently direct optical excitations along molecular assemblies.This project will integrate education and outreach with research through numerous channels. The PI will incorporate simulation methods developed in this research project into the graduate level course "Computational Materials Science". In collaboration with the Boston University Technology Innovation Scholars Program, where undergraduate students interested in becoming teachers will contribute to teaching at diverse high schools throughout the Boston area, lesson plans will be developed that incorporate the applicability of the research to solar energy conversion. Together with the research team, the PI will participate in the Boston University U-Design program, introducing middle school age kids to computational science by means of design projects. In collaboration with the BU Outreach and Diversity Program, the research team will deploy activity kits to museums across the world, introducing the scientific concepts to the broader community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结这个职业奖项支持专注于理解光与碳基有机分子有序组装的相互作用的计算研究和教育,目标是实现先进的太阳能转换材料。太阳能转换是指利用来自太阳的光并将其转换为电能或化学能的过程;这是一项很有前途的技术,可以应对与预计未来能源需求增长相关的挑战。这项技术需要新材料,专门为实现更高效、更便宜的太阳能转换设备而设计。与用于太阳能转换装置的传统无机材料相比,有机材料丰富,其性能可以通过合成有机化学技术进行广泛的调整。PI将利用先进的计算机模拟技术来研究有机组件中的电子如何对光做出反应,并开发出分子结构对电子性质影响的物理直观模型。这项研究的目标是利用计算机模拟来发现新的规则,以设计能够高效地转换太阳能的有机组件。该项目将通过多种渠道将教育和推广与研究相结合。该研究所将把这个研究项目中开发的模拟方法纳入研究生水平的课程“计算材料科学”。与波士顿大学技术创新学者计划合作,有兴趣成为教师的本科生将为波士顿地区不同高中的教学做出贡献,将制定教学计划,纳入研究对太阳能转换的适用性。PI将与研究团队一起参与波士顿大学U-Design项目,通过设计项目向中学年龄的孩子介绍计算科学。研究小组将与波士顿大学外联和多样性计划合作,向世界各地的博物馆部署活动套件,向更广泛的社区介绍科学概念。技术总结这个职业奖项支持旨在发展对有机组件中的光学激发和能量转移的物理直观理解的计算研究和教育。有机材料是一类高度可调的光学活性材料,在光伏和人工光合作用方面具有广阔的应用前景。有机化学领域可以非常精确地合成分子组装体;然而,设计这些系统以实现有效的能量转移所需的理解是缺乏的。理论和计算将被用来发展关于有机材料激发态的更深层次的物理直觉。本项目主要研究长程有序对有机分子在凝聚相中的光学性质的影响。PI和研究团队将使用第一性原理电子结构理论来更好地了解如何控制有序有机组件中的光学激发态,以提供更高的光伏和光催化效率。结构-性质关系的确定对于新分子的设计至关重要;PI和她的研究团队将量化光学激发态的各个方面,例如激子与声子的相互作用,这对能量转移和转换有很大影响,但理解和量化具有挑战性。此外,这些研究将揭示激子效应很强的系统中电子-空穴对的行为。此外,还将开发新的计算方法来探索电子-声子相互作用的作用,这在扩展系统中是很难表征的。旨在验证预测的实验合作者的反馈将被用于改进计算方法,从而增加这项研究的影响。这项研究的最终结果将是提供新的设计规则,使有机材料的开发能够有效地引导分子组装的光激发。该项目将通过多种渠道将教育和推广与研究相结合。该研究所将把这个研究项目中开发的模拟方法纳入研究生水平的课程“计算材料科学”。与波士顿大学技术创新学者计划合作,有兴趣成为教师的本科生将为波士顿地区不同高中的教学做出贡献,将制定教学计划,纳入研究对太阳能转换的适用性。PI将与研究团队一起参与波士顿大学U-Design项目,通过设计项目向中学年龄的孩子介绍计算科学。与波士顿大学推广和多样性计划合作,研究团队将在世界各地的博物馆部署活动套件,向更广泛的社区介绍科学概念。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The impact of stacking and phonon environment on energy transfer in organic chromophores: computational insights
堆积和声子环境对有机发色团能量转移的影响:计算见解
  • DOI:
    10.1039/d3tc00479a
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Mukazhanova, Aliya;Negrin-Yuvero, Hassiel;Freixas, Victor M.;Tretiak, Sergei;Fernandez-Alberti, Sebastian;Sharifzadeh, Sahar
  • 通讯作者:
    Sharifzadeh, Sahar
Phonon-Induced Localization of Excitons in Molecular Crystals from First Principles
  • DOI:
    10.1103/physrevlett.130.086401
  • 发表时间:
    2023-02-24
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Alvertis, Antonios M.;Haber, Jonah B.;Neaton, Jeffrey B.
  • 通讯作者:
    Neaton, Jeffrey B.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sahar Sharifzadeh其他文献

Quantum mechanical modeling of electronic excitations in metal oxides: Magnesia as a prototype
  • DOI:
    10.1016/j.cplett.2011.11.003
  • 发表时间:
    2012-01-05
  • 期刊:
  • 影响因子:
  • 作者:
    Dalal K. Kanan;Sahar Sharifzadeh;Emily A. Carter
  • 通讯作者:
    Emily A. Carter
Interplay of broken symmetry and delocalized excitations in the insulating state of 1T-TaS2
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
  • 作者:
    Xun Jia;Anubhab Haldar;Jungho Kim;Yilin Wang;Gilberto Fabbris;Karl Ludwig;Stefanos Kourtis;Mary Upton;Yu Liu;Wenjian Lu;Xuan Luo;Yu-Ping Sun;Diego Casa;Sahar Sharifzadeh;Pierre T. Darancet;Yue Cao
  • 通讯作者:
    Yue Cao

Sahar Sharifzadeh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sahar Sharifzadeh', 18)}}的其他基金

Conference: Electronic Structure Workshop (ES24)
会议:电子结构研讨会(ES24)
  • 批准号:
    2414597
  • 财政年份:
    2024
  • 资助金额:
    $ 54.23万
  • 项目类别:
    Standard Grant
First-Principles Investigation of Energy Transport within Highly Ordered Organic Molecular Arrays
高度有序有机分子阵列内能量传输的第一性原理研究
  • 批准号:
    1610031
  • 财政年份:
    2016
  • 资助金额:
    $ 54.23万
  • 项目类别:
    Standard Grant

相似国自然基金

“Lignin-first”策略下镁碱催化原生木质素定向氧化为小分子有机酸的机制研究
  • 批准号:
    21908075
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于First Principles的光催化降解PPCPs同步脱氮体系构建及其电子分配机制研究
  • 批准号:
    51778175
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    $ 54.23万
  • 项目类别:
    Continuing Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 54.23万
  • 项目类别:
    Continuing Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
  • 批准号:
    2339995
  • 财政年份:
    2024
  • 资助金额:
    $ 54.23万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Electrochemical Metal Extraction in Molten Salts from First Principles
职业:从第一原理了解熔盐中的电化学金属萃取
  • 批准号:
    2340765
  • 财政年份:
    2024
  • 资助金额:
    $ 54.23万
  • 项目类别:
    Continuing Grant
CAREER: Electronic and Optical Properties in Generalized Moire Systems from First Principles
职业:从第一原理看广义莫尔系统的电子和光学特性
  • 批准号:
    2238328
  • 财政年份:
    2023
  • 资助金额:
    $ 54.23万
  • 项目类别:
    Continuing Grant
CAREER: Advancing Atomic-Level Understanding of Kinetically Driven Solid-Solid Phase Transitions from First Principles and Machine Learning
职业:从第一原理和机器学习推进对动力学驱动的固-固相变的原子级理解
  • 批准号:
    2238516
  • 财政年份:
    2023
  • 资助金额:
    $ 54.23万
  • 项目类别:
    Continuing Grant
CAREER: Quantum Coherence, Optical Readout, and Quantum Transduction for Spin Qubits from First-Principles Calculations
职业:基于第一原理计算的自旋量子位的量子相干性、光学读出和量子传导
  • 批准号:
    2342876
  • 财政年份:
    2023
  • 资助金额:
    $ 54.23万
  • 项目类别:
    Continuing Grant
CAREER: Molecular Mechanisms Underlying Redox Chemistry in Electrochemical Cells from First Principles
职业:从第一原理开始研究电化学电池中氧化还原化学的分子机制
  • 批准号:
    2145144
  • 财政年份:
    2022
  • 资助金额:
    $ 54.23万
  • 项目类别:
    Continuing Grant
CAREER: First Principles Design of Error-Corrected Solid-State Quantum Repeaters
职业:纠错固态量子中继器的第一原理设计
  • 批准号:
    2246394
  • 财政年份:
    2022
  • 资助金额:
    $ 54.23万
  • 项目类别:
    Continuing Grant
CAREER: Quantum Coherence, Optical Readout, and Quantum Transduction for Spin Qubits from First-Principles Calculations
职业:基于第一原理计算的自旋量子位的量子相干性、光学读出和量子传导
  • 批准号:
    2143233
  • 财政年份:
    2022
  • 资助金额:
    $ 54.23万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了