Tailoring Size and Shape of beta-Sheet Nanocrystals for Crosslinking and Reinforcement of Elastomers

用于弹性体交联和增强的β-片纳米晶体的尺寸和形状定制

基本信息

  • 批准号:
    1610109
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARY. Elastomers are rubbery materials that are produced on the scale of 200 million tons annually worldwide. Their applications range from daily goods (for example tires) to defense (for example sonar domes of navy ships) and to biomedicine (for example coatings of artery stents). This NSF-supported research/educational team led by a chemist (Jia) and a physicist/chemical engineer (Foster) combines inspirations from biological systems and lessons from chemical and physical principles to develop the next generation of elastomers. A central focus is to reduce the size of hard particles that strengthen the elastomers to the nanometer scale. The research team will advance our fundamental understanding of how these reinforcing elements produce elastomers that are strong, stiff, and extensible and that have programmed capability to dissipate energy. This scientific knowledge can be used for a number of applications, e.g. tires that are safe, durable, and fuel-efficient. The elastomers developed can also potentially be directly applied to make medical devices safer. Parallel to the research effort, the program will train undergraduate and graduate students in this interdisciplinary area. The team will carry out outreach activities aimed at attracting domestic talent to careers in science and technology and particularly in polymer-related areas using aspects of elastomers as the primary content materials.TECHNICAL SUMMARY. The ability to manipulate atoms and molecules to form hierarchical structures with precisely controlled size and shape is central to nanoscience. Beta-sheet nanocrystals exist in both natural and synthetic elastomers and function as crosslinks and provide reinforcement. However, their morphologies are drastically different in these two circumstances. In natural elastomers (i.e., silks), they are particulates with all three dimensions smaller than 10 nm. In synthetic elastomers (e.g., polyurethanes), they have been found to be fibrous with the longest dimension, in the hydrogen-bonding direction, ranging from hundreds of nanometers to microns. In silks, the size control is attributed to specific amino acid sequences and an exquisite reeling process. Controlling the size and aspect ratio of beta-sheet nanocrystals is an unresolved challenge for synthetic systems. This research pursues this central quest of nanoscience in an important area of soft materials, elastomers, to realize material properties otherwise unattainable. The scientific approach of the research is multifaceted, involving synthesis, characterization, and mechanical studies across the molecular, supramolecular, and nanometer scales. Based on their recent success in reducing the longest dimension of n-beta-sheet nanocrystals in a series of oligo(beta-alanine)-grafted polyisobutylenes to well below 100 nm, the research team will expand their ability to regulate the size and aspect ratio of the beta-sheet nanocrystals without an elaborate aminoacid sequence and to elucidate the reinforcing characteristics of the two morphologically contrasting beta-sheet nanocrystals. The polymer brush at the interface of the nanocrystal will be another focus as it is critical for the morphological control and likely plays an important role in reinforcement as well. The specific objectives of the planned research are to: (1) synthesize monodisperse oligo(beta-alanine)-grafted polyisobutylenes that form particulate nanocrystals with still smaller aspect ratios as well as those that form fibrous nanocrystals. (2) characterize the structures and morphologies of the beta-sheet nanocrystals including the polymer brush attached to the nanocrystal surface. (3) elucidate the reinforcing characteristics and study the reinforcing mechanisms of the particulate and fibrous nanocrystals.
非技术摘要。 弹性体是橡胶材料,全球每年生产2亿吨。它们的应用范围从日常用品(例如轮胎)到国防(例如海军舰艇的声纳圆顶)和生物医学(例如动脉支架涂层)。这个由化学家(Jia)和物理学家/化学工程师(Foster)领导的NSF支持的研究/教育团队将生物系统的灵感与化学和物理原理的教训相结合,以开发下一代弹性体。中心焦点是将增强弹性体的硬颗粒的尺寸减小到纳米级。研究团队将推进我们对这些增强元件如何生产坚固、坚硬、可延伸并且具有程序化能量消散能力的弹性体的基本理解。这些科学知识可以用于许多应用,例如安全,耐用和省油的轮胎。开发的弹性体也可以直接用于使医疗器械更安全。平行的研究工作,该计划将培养本科生和研究生在这个跨学科领域。该团队将开展外展活动,旨在吸引国内人才从事科学技术职业,特别是使用弹性体作为主要内容材料的聚合物相关领域。技术摘要。 操纵原子和分子以形成具有精确控制的大小和形状的分级结构的能力是纳米科学的核心。β-片层纳米晶体存在于天然和合成弹性体中,起交联作用并提供增强作用。然而,它们的形态在这两种情况下是截然不同的。在天然弹性体(即,丝),它们是所有三个维度都小于10 nm的颗粒。在合成弹性体(例如,聚氨酯),已经发现它们是纤维状的,在氢键方向上具有最长的尺寸,范围从数百纳米到微米。在丝绸中,尺寸控制归因于特定的氨基酸序列和精致的缫丝过程。控制β-折叠纳米晶体的尺寸和纵横比是合成系统的一个未解决的挑战。 本研究在软材料,弹性体的重要领域追求纳米科学的核心追求,以实现材料特性,否则无法实现。 研究的科学方法是多方面的,涉及分子,超分子和纳米尺度的合成,表征和机械研究。基于他们最近成功地将一系列寡聚(β-丙氨酸)接枝聚异丁烯中的n-β-折叠纳米晶体的最长尺寸降低到远低于100 nm,研究小组将扩大他们在没有精心设计的氨基酸序列的情况下调节β-折叠纳米晶体的尺寸和纵横比的能力,并阐明两种形态对比的β-折叠纳米晶体的增强特性。聚合物刷在界面处的粘结将是另一个焦点,因为它是关键的形态控制,并可能发挥重要的作用,以及在增强。 计划研究的具体目标是:(1)合成单分散低聚(β-丙氨酸)-接枝聚异丁烯,形成具有更小纵横比的颗粒纳米晶体以及形成纤维状纳米晶体的那些。 (2)表征了包括附着于纳米表面的聚合物刷的β-片层纳米晶体的结构和形态。 (3)阐明了颗粒状和纤维状纳米晶的增强特性,并研究了其增强机理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li Jia其他文献

Improved thermoelectric properties of doped A(0.5)B(0.5)NiSn (A, B = Ti, Zr, Hf) with a special quasirandom structure
具有特殊准随机结构的掺杂 A(0.5)B(0.5)NiSn (A, B = Ti, Zr, Hf) 的热电性能得到改善
  • DOI:
    10.1007/s10853-020-05519-0
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Xu Xiuting;Liu Yang;Fang Wei;Teng Sukai;Wang Jiaxi;He Fuli;Wang Yafan;Yin Fuxing;Li Jun;Li Jia
  • 通讯作者:
    Li Jia
Alstonlarsines A-D, Four Rearranged Indole Alkaloids from Alstonia scholaris
Alstonlarsines A-D,来自 Alstonia brothers 的四种重排吲哚生物碱
  • DOI:
    10.1021/acs.orglett.9b00230
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Zhu Xu Xin;Fan Yao Yue;Xu Lei;Liu Qun Fang;Wu Jiang Ping;Li Jing Ya;Li Jia;Gao Kun;Yue Jian Min
  • 通讯作者:
    Yue Jian Min
Random sources for cusped beams
剪切光束的随机源
  • DOI:
    10.1364/oe.24.017779
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Li Jia;Wang Fei;Korotkova Olga
  • 通讯作者:
    Korotkova Olga
Interannual and Seasonal Variability of Glacier Surface Velocity in the Parlung Zangbo Basin, Tibetan Plateau
青藏高原帕隆藏布盆地冰川表面速度的年际和季节变化
  • DOI:
    10.3390/rs13010080
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Jing Zhang;Li Jia;Massimo Menenti;Shaoting Ren
  • 通讯作者:
    Shaoting Ren
Analysis of forest damage caused by the snow and ice chaos along a transect across southern China in spring 2008
2008年春季华南某断面冰雪灾害对森林造成的损害分析
  • DOI:
    10.1007/s11442-011-0840-y
  • 发表时间:
    2011-05
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Shao Quanqin;Huang Lin;Liu Jiyuan;Kuang Wenhui;Li Jia
  • 通讯作者:
    Li Jia

Li Jia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Li Jia', 18)}}的其他基金

Development of Zwitterionic Nickel Catalysts for Carbonylative Polymerization and Copolymerization of Ethylene and Cyclic Ethers
乙烯与环醚羰基化聚合及共聚两性离子镍催化剂的研制
  • 批准号:
    1900430
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
I-Corps: Non-Silane Coupling Agents
I-Corps:非硅烷偶联剂
  • 批准号:
    1837922
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SusChEM: Carbonylative Polymerization of Heterocycles and Heteroalkenes
SusChEM:杂环和杂烯烃的羰基化聚合
  • 批准号:
    1266442
  • 财政年份:
    2013
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
EAGER: Carbonylative polymerization of aldehydes
EAGER:醛的羰基化聚合
  • 批准号:
    0965060
  • 财政年份:
    2010
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CAREER: Alternating Copolymerization of Aziridines and Carbon Monoxide
职业:氮丙啶和一氧化碳的交替共聚
  • 批准号:
    0134285
  • 财政年份:
    2002
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向下一代LCD显示技术应用的氮化物多量子阱结构绿光mini-size LED性能研究
  • 批准号:
    61904158
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Molecular factors involved in determining the size and shape of starch granules in rice endosperm
决定水稻胚乳淀粉颗粒大小和形状的分子因素
  • 批准号:
    23KF0207
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Mechanisms controlling cell size and shape
控制细胞大小和形状的机制
  • 批准号:
    10622938
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
Doctoral Dissertation Research: Body Size and Shape Variation in Modern and Late Pleistocene-Holocene Gazelles: A 3D Approach
博士论文研究:现代和晚更新世-全新世瞪羚的体型和形状变化:3D 方法
  • 批准号:
    2308745
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Effects of Chemical Composition, Ingot diameter and shape on Solidification and Macrosegregation in Large Size Ingots of High Strength Steels
化学成分、钢锭直径和形状对大尺寸高强度钢钢锭凝固和宏观偏析的影响
  • 批准号:
    536444-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Collaborative Research and Development Grants
Effect of Engineered Gold Nanoparticle Size and Shape on Radiation Therapy Enhancement
工程金纳米颗粒尺寸和形状对放射治疗增强的影响
  • 批准号:
    486108
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship Programs
Synthesis of metal oxide nanoparticles with controlled shape and size utilizing organic molecular cages
利用有机分子笼合成形状和尺寸受控的金属氧化物纳米颗粒
  • 批准号:
    22K14690
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Quantitative dissection of the events that encode bone size and shape during regeneration
再生过程中编码骨骼大小和形状的事件的定量剖析
  • 批准号:
    10386597
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Collaborative Research RUI: Examination of the Effect of Templating Agents on the Size, Shape and Chiral Recognition of Bifurcated Amino Acid Based Amphiphilic Molecular Assemblies
合作研究 RUI:检查模板剂对基于分叉氨基酸的两亲性分子组装体的尺寸、形状和手性识别的影响
  • 批准号:
    2203652
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research RUI: Examination of the Effect of Templating Agents on the Size, Shape and Chiral Recognition of Bifurcated Amino Acid Based Amphiphilic Molecular Assemblies
合作研究 RUI:检查模板剂对基于分叉氨基酸的两亲性分子组装体的尺寸、形状和手性识别的影响
  • 批准号:
    2203506
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Quantitative dissection of the events that encode bone size and shape during regeneration
再生过程中编码骨骼大小和形状的事件的定量剖析
  • 批准号:
    10620118
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了