Understanding the Degradation Mechanisms in Phosphorous-Carbon Hybrid Anodes for Sodium-Ion Batteries
了解钠离子电池磷碳混合阳极的降解机制
基本信息
- 批准号:1610430
- 负责人:
- 金额:$ 44.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical AbstractElectrical energy storage is a key component of the renewables-friendly future power grid with high-energy efficiency, stability, and resilience. Sodium ion batteries have a significant advantage over widely used Lithium ion batteries, owing to the low cost and abundance of sodium precursor. Phosphorus-based materials are promising as anodes for sodium ion batteries due to their high capacity and low cost. However, similar to alloy anodes in lithium ion batteries, phosphorus undergoes ~300% volume change during charge/discharge, leading to pulverization of the active materials, unstable growth of the solid electrolyte interphase, and poor cyclability. With the support of the Solid State nad Materials Chemistry program, this research project strives to bring low-cost, high-performance, long-cycling sodium ion batteries closer to real-world applications by understaning the degradation mechanisms of phosphorus-based anode materials. Such batteries would enable greater integration of intermittent renewable power sources such as wind and solar, decrease dependence on fossil fuels, and improve the overall efficiency, stability, and resilience of the power grid. The research project also enhances involvement of women and minorities in science and engineering, and stimulates the interests of students at Penn State in the fast-evolving research field of nanostructured energy storage materials.Technical AbstractThe research objective of this award is to uncover the underlying mechanisms of electro-chemically driven mechanical degradation in phosphorus-carbon hybrids as anode materials for sodium ion batteries through an integrated experimental-modeling approach. Experimentally, in situ TEM studies allow atomic-scale observation of phase transformation and failure mechanisms. Combined with the low-cost, scalable synthesis methods and advanced full-cell battery testing and characterization, the experimental studies enable the research team to build an atomic-scale picture of microstructure, morphology, and composition evolution of the hybrids during electrochemical cycling. The proposed multiscale models seamlessly integrate with the experimental characterizations to identify the leading degradation mechanisms and accordingly optimize the material designs. The integrated experimental-modeling approach helps foster transformative progress for developing high-performance energy storage materials.
电能存储是可再生能源友好型未来电网的关键组成部分,具有高能效,稳定性和弹性。由于钠前驱体的低成本和丰富,钠离子电池相对于广泛使用的锂离子电池具有显著的优势。 磷基材料由于其高容量和低成本而有希望作为钠离子电池的阳极。 然而,与锂离子电池中的合金阳极类似,磷在充电/放电期间经历约300%的体积变化,导致活性材料的粉碎、固体电解质界面的不稳定生长和差的循环性能。在固态材料化学项目的支持下,该研究项目通过了解磷基阳极材料的降解机制,努力使低成本,高性能,长循环的钠离子电池更接近现实世界的应用。这种电池将能够更好地整合风能和太阳能等间歇性可再生能源,减少对化石燃料的依赖,并提高电网的整体效率,稳定性和弹性。该研究项目还加强了妇女和少数民族对科学和工程的参与,并激发了宾夕法尼亚州立大学学生对快速发展的纳米结构储能材料研究领域的兴趣。技术摘要该奖项的研究目标是揭示电化学驱动的磷机械降解的潜在机制,碳混合物作为阳极材料的钠离子电池通过一个综合的实验建模方法。在实验上,原位TEM研究允许原子尺度的相变和故障机制的观察。结合低成本,可扩展的合成方法和先进的全电池测试和表征,实验研究使研究团队能够建立电化学循环过程中混合物的微观结构,形态和组成演变的原子尺度图像。所提出的多尺度模型与实验表征无缝集成,以识别主要的降解机制,并相应地优化材料设计。集成的实验建模方法有助于促进开发高性能储能材料的变革性进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donghai Wang其他文献
Developing atmospheric large-scale forcing data for single-column and cloud-resolving models from The Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III)
为第三次青藏高原大气科学实验(TIPEX-III)的单柱和云解析模型开发大气大尺度强迫数据
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Donghai Wang - 通讯作者:
Donghai Wang
Bottom-up synthesis of mesoporous carbon/silicon carbide composite at low temperature for supercapacitor electrodes
低温自下而上合成介孔碳/碳化硅复合材料用于超级电容器电极
- DOI:
10.1016/j.matlet.2017.04.011 - 发表时间:
2017-07 - 期刊:
- 影响因子:3
- 作者:
Duihai Tang;Ran Yi;Wenting Zhang;Zhenan Qiao;Yunling Liu;Qisheng Huo;Donghai Wang - 通讯作者:
Donghai Wang
Economic viability and environmental impact investigation for the biofuel supply chain using co-fermentation technology
使用共发酵技术的生物燃料供应链的经济可行性和环境影响调查
- DOI:
10.1016/j.apenergy.2019.114235 - 发表时间:
2020 - 期刊:
- 影响因子:11.2
- 作者:
Yu Li;Rajkamal Kesharwani;Zeyi Sun;Ruwen Qin;C. Dagli;Meng Zhang;Donghai Wang - 通讯作者:
Donghai Wang
Evaluation of pelleting as a pre-processing step for effective biomass deconstruction and fermentation.
评价制粒作为有效生物质解构和发酵的预处理步骤。
- DOI:
10.1016/j.bej.2013.05.014 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Y. Guragain;Jonathan Wilson;S. Staggenborg;L. Mckinney;Donghai Wang;P. Vadlani - 通讯作者:
P. Vadlani
The effect of air flow rate and biomass type on the performance of an updraft biomass gasifier.
空气流量和生物质类型对上升式生物质气化炉性能的影响。
- DOI:
10.15376/biores.10.2.3615-3624 - 发表时间:
2015 - 期刊:
- 影响因子:1.5
- 作者:
A. James;W. Yuan;M. Boyette;Donghai Wang - 通讯作者:
Donghai Wang
Donghai Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Visualization of degradation mechanisms and ions migration pathways in perovskite solar cells
钙钛矿太阳能电池中降解机制和离子迁移路径的可视化
- 批准号:
23K26768 - 财政年份:2024
- 资助金额:
$ 44.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
DynProtect - Mechanisms of dynein-dependent transport and degradation of protein aggregates.
DynProtect - 动力蛋白依赖性运输和蛋白质聚集体降解的机制。
- 批准号:
EP/Y026004/1 - 财政年份:2023
- 资助金额:
$ 44.5万 - 项目类别:
Fellowship
Degradation mechanisms of structural composites under extreme weather
极端天气下结构复合材料的降解机制
- 批准号:
DP230101152 - 财政年份:2023
- 资助金额:
$ 44.5万 - 项目类别:
Discovery Projects
Real-Time Monitoring of Internal Erosion Using Shear Waves and Elucidation of Soil Structure Degradation Mechanisms
利用剪切波实时监测内部侵蚀并阐明土壤结构退化机制
- 批准号:
23KJ0512 - 财政年份:2023
- 资助金额:
$ 44.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Sunlight and tire wear particles - a toxic combination? Evaluating mechanisms for mobilization and degradation of tire particle compounds
阳光和轮胎磨损颗粒——有毒的组合?
- 批准号:
2327008 - 财政年份:2023
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
Visualization of degradation mechanisms and ions migration pathways in perovskite solar cells
钙钛矿太阳能电池中降解机制和离子迁移路径的可视化
- 批准号:
23H02075 - 财政年份:2023
- 资助金额:
$ 44.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mechanisms of replication fork degradation in vertebrates
脊椎动物复制叉降解机制
- 批准号:
10564777 - 财政年份:2023
- 资助金额:
$ 44.5万 - 项目类别:
CAREER: Probing and Controlling Acidic Electrocatalytic Oxidation Mechanisms and Catalyst Degradation Processes
职业:探测和控制酸性电催化氧化机制和催化剂降解过程
- 批准号:
2144365 - 财政年份:2022
- 资助金额:
$ 44.5万 - 项目类别:
Continuing Grant
Molecular mechanisms of ribosome degradation in host defense of insect cells
昆虫细胞宿主防御中核糖体降解的分子机制
- 批准号:
22H02358 - 财政年份:2022
- 资助金额:
$ 44.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)