Microlasers as a platform to study fluctuations in non-Hermitian dynamical systems

微型激光器作为研究非厄米动力系统波动的平台

基本信息

  • 批准号:
    1610540
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-12-01 至 2020-11-30
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThe Division of Materials Research and the Division of Electrical, Communications, and Cyber Systems contribute funds to this award, which supports theoretical research and education towards advancing the understanding of the properties and the design of novel laser systems that are key components of communication and sensing systems. Enormous progress in nanofabrication technologies has allowed the fabrication of compact chip-based structures that enable confinement of light and tunable laser emission. However, and while allowing the design of complex laser systems with improved functionality, the high level of control over fabrication and the many available design parameters present a substantial challenge for laser theory. The objective of the research is to develop conceptual foundations and computational tools to investigate the properties of complex on-chip laser systems. The concepts, methods, and computational tools developed in the course of the proposed research will be instrumental in the design of novel applications such as on-chip coherent light sources for spectroscopy and electrically controllable optical switches. In addition to mentoring and training graduate students on modern analytical and computational techniques of laser physics, the proposed research will forge interdisciplinary collaborations between engineers and physicists, and has the potential to accelerate the translation of basic science to applications such as optical spectroscopy. TECHNICAL SUMMARYThe Division of Materials Research and the Division of Electrical, Communications, and Cyber Systems contribute funds to this award, which supports theoretical research and education towards advancing the understanding of the dynamics and noise properties of novel laser systems that feature complex resonator geometries and spatially modulated gain and loss. The manipulation of the real part of the index of refraction of optical systems is the cornerstone of modern photonics and quantum optics. Selective pumping of complex laser systems, which is at the core of this project, represents a new design space that relates to the simultaneous electrical tuning of the imaginary along with the real part of the index of refraction (non-Hermitian engineering), with potentially transformative implications for laser physics. A key property of these laser systems is that their fluctuations are governed by non-Hermitian evolution operators, which are of current interest across several fields ranging from mathematics to biology, chemistry, and physics. One objective of the research is to theoretically investigate fluctuation properties and dynamics governed by non-Hermitian operators using microlasers as a physical system, where the parameters of such operators can be continuously tuned. The PI's earlier work has demonstrated that judicious spatial modulation of gain and loss through spatially tailored pump injection can provide novel functionalities and significantly boost the out-coupled optical power of microlasers. Instrumental in that earlier work was the Steady-state Ab Initio Laser Theory (SALT) that the PI had developed to access laser characteristics in the presence of optical leakage and spatial hole-burning interactions. These earlier studies have exclusively addressed steady-state operation. One of the primary goals of the proposed research is to develop a theoretical and computational framework to study the nonequilibrium dynamics and noise properties of complex laser systems beyond their steady state behavior, which is not accessible by SALT. The research will focus on interesting dynamical regimes where the fluctuation dynamics display spectral degeneracies or instabilities towards self-pulsing. The proposed research will integrate state-of-the-art techniques and concepts from a multitude of fields, such as stochastic evolution techniques of quantum optics, spectral theory of non-Hermitian operators, and laser theory. Close contact to experiments will be maintained through existing collaborations of the PI. The concepts, methods, and computational tools developed for the research will be instrumental in the design of novel coherent light sources for optical sensing and frequency-comb-based spectroscopy. In addition to mentoring and training graduate students on modern analytical and computational techniques of laser physics, the proposed research will forge interdisciplinary collaborations between engineers and physicists, and has the potential to accelerate the translation of basic science to applications such as optical spectroscopy.
非技术总结材料研究部和电气,通信和网络系统部为该奖项提供资金,该奖项支持理论研究和教育,以促进对通信和传感系统关键部件的新型激光系统的性能和设计的理解。纳米制造技术的巨大进步已经允许制造紧凑的基于芯片的结构,其能够限制光和可调谐激光发射。然而,虽然允许设计具有改进功能的复杂激光系统,但对制造的高水平控制和许多可用的设计参数对激光理论提出了重大挑战。该研究的目的是开发概念基础和计算工具,以研究复杂的片上激光系统的特性。在拟议的研究过程中开发的概念,方法和计算工具将有助于设计新的应用,如光谱和电控光学开关的片上相干光源。除了对研究生进行激光物理学现代分析和计算技术的指导和培训外,拟议的研究还将建立工程师和物理学家之间的跨学科合作,并有可能加速基础科学向光谱学等应用的转化。材料研究部和电气、通信和网络系统部为该奖项提供资金,该奖项支持理论研究和教育,以促进对新型激光系统的动力学和噪声特性的理解,该系统具有复杂的谐振腔几何形状和空间调制的增益和损耗。光学系统折射率的真实的部分的操纵是现代光子学和量子光学的基石。复杂激光系统的选择性泵浦是该项目的核心,它代表了一个新的设计空间,涉及折射率(非厄米工程)的虚部沿着与真实的部分的同时电调谐,对激光物理具有潜在的变革意义。这些激光系统的一个关键特性是它们的波动由非厄米演化算子控制,这是从数学到生物学,化学和物理学等多个领域的当前兴趣。该研究的一个目标是从理论上研究非厄米算子的波动特性和动力学,使用微激光器作为一个物理系统,其中这些算子的参数可以连续调谐。PI的早期工作已经证明,通过空间定制的泵浦注入对增益和损耗进行明智的空间调制可以提供新的功能,并显着提高微激光器的耦合输出光功率。在早期的工作中,仪器是稳态从头算激光理论(SALT),PI开发了该理论,以在存在光泄漏和空间烧孔相互作用的情况下获得激光特性。这些早期的研究专门针对稳态操作。拟议的研究的主要目标之一是开发一个理论和计算框架,以研究复杂的激光系统的非平衡动力学和噪声特性超出其稳态行为,这是无法访问的SALT。该研究将集中在有趣的动力学制度的波动动力学显示光谱退化或不稳定性对自脉冲。 拟议的研究将整合来自众多领域的最先进的技术和概念,如量子光学的随机演化技术,非厄米算子的光谱理论和激光理论。将通过PI的现有合作保持与实验的密切联系。为这项研究开发的概念、方法和计算工具将有助于设计用于光学传感和基于频率梳的光谱学的新型相干光源。除了对研究生进行激光物理学现代分析和计算技术的指导和培训外,拟议的研究还将建立工程师和物理学家之间的跨学科合作,并有可能加速基础科学向光谱学等应用的转化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hakan Tureci其他文献

Hakan Tureci的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hakan Tureci', 18)}}的其他基金

CAREER: Collective effects in Cavity Quantum Electrodynamics - From fundamental science to devices
职业:腔量子电动力学的集体效应 - 从基础科学到设备
  • 批准号:
    1151810
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

Rapid Continuous Improvement Platform through Generative AI: A feasibility study of Automation in Construction Cost Budgeting (RACIP-COST)
通过生成式人工智能快速持续改进平台:建筑成本预算自动化的可行性研究(RACIP-COST)
  • 批准号:
    10080485
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
Construction of a teacher education platform linking theory and practice with physical education lesson study
理论联系实际、体育课学的教师教育平台构建
  • 批准号:
    23H00971
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Study of Resilient IoT Platform for Promoting Efficient Wireless Resource Reuse and Inter-service Collaboration
促进高效无线资源重用和服务间协作的弹性物联网平台研究
  • 批准号:
    23K11067
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Neural activity-based candidate gene identification to link eating disorders and drug addiction
基于神经活动的候选基因识别将饮食失调和药物成瘾联系起来
  • 批准号:
    10528062
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Bioinformatics Core
生物信息学核心
  • 批准号:
    10404414
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Investigating the Protective Efficacy of SIV/HIV T and B cell Immunity Induced by RNA Replicons
研究 RNA 复制子诱导的 SIV/HIV T 和 B 细胞免疫的保护功效
  • 批准号:
    10673223
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
  • 批准号:
    10679749
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Using Natural Mouse Movement to Establish a Developmental "Biomarker" for Corticospinal Damage
利用自然小鼠运动建立皮质脊髓损伤的发育“生物标志物”
  • 批准号:
    10667807
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
BEASTS-Novel Biomimetic Liver Platform for Enabling ALD Researchers
BEASTS-为 ALD 研究人员提供支持的新型仿生肝脏平台
  • 批准号:
    10697452
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Establishing patient-derived iPSCs as a platform for discovery research in NAFLD
建立源自患者的 iPSC 作为 NAFLD 发现研究的平台
  • 批准号:
    10647450
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了