Collaborative Research: Robust Asset-and-User-Aware Dispatch of the Power Distribution Grid during Extreme Temperatures
合作研究:极端温度下配电网的鲁棒资产和用户感知调度
基本信息
- 批准号:1610703
- 负责人:
- 金额:$ 11.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Extreme temperatures can push various power grid components to their operational limits. The available capacity of most generation resources and power system components becomes negatively affected as the temperature increases beyond certain thresholds. Not surprisingly, this temperature-induced reduction in available power generation and transmission capacities generally coincides with increased electricity demand on the system, mostly attributed to the increased utilization of air-conditioning (A/C) systems. Ignoring the effects of temperature on various grid assets could lead to overloading these assets, resulting in reduced lifetime and premature component failure. It is therefore crucial to incorporate the effects of ambient temperature into power grid operation in order to prevent stress on components and avoid blackouts that could result from failure to meet demand during periods of extreme temperature. This issue is becoming more important since climate models project an increase in the duration and frequency of heat waves. Loss of power during extreme temperature conditions is not merely an inconvenience, as it may also impact the availability of other critical infrastructures such as water sanitation plants, transportation systems, and hospitals and other urgent care units. In this project, the researchers will pursue a possible solution that involves design of a methodology for proactive dispatch of the energy resources in a distribution system exposed to extreme ambient temperatures. Electric utilities have traditionally addressed the issue at hand through two means: defining dynamic thermal ratings (DTR) for various components to adjust their available capacity based on ambient temperature and, more recently, offering incentivized demand response (DR) programs for remotely shutting down A/C units under stressed conditions. Although effective in many instances, are vulnerable to significant weaknesses. First, DTR are often assigned heuristically or experimentally, and are not usually amenable to closed form mathematical calculation. Also, A/C-based DR is usually implemented based on the contractual agreements between the utility and the users, and does incorporate users' well-being (i.e., the indoor temperature users will experience due to A/C shutdown). This, under severe heat wave events, can potentially lead to negative health impacts especially on infants and the elderly. The goal of this proposal is to improve the effectiveness of both these tools. The proposed solution models the effects of excess temperatures on available generation/transmission capacity of components, as well as on expected reduction in component lifespan due to overloading or operating under harsh conditions. Indoor temperatures at residential homes are incorporated into the DR dispatch by developing thermal models for houses, which can determine the indoor temperature based on internal and external gains. This creates a multi-objective design problem in which the aim is to optimize cost in conjunction with asset lifetime and user comfort. To address the inherent uncertainties in the model, a robust optimization approach is adopted. To ensure tractability of the optimization problem and the scalability of the proposed solution, standard restructuring techniques will be used to transform the nonlinear formulation into a convex, mixed-integer quadratically constrained programming problem. Furthermore, to enable awareness on user conditions, algorithms will be built based on non-invasive monitoring to detect human occupancy and status of A/C units using the aggregate measurements available from smart meters.
极端温度会将各种电网组件推到其运行极限。随着温度升高超过一定阈值,大多数发电资源和电力系统部件的可用容量受到负面影响。毫不奇怪,这种温度引起的可用发电和输电能力的减少通常与系统的电力需求增加相一致,主要是由于空调(A/C)系统的使用增加。忽略温度对各种电网资产的影响可能会导致这些资产过载,从而导致寿命缩短和组件过早失效。因此,至关重要的是将环境温度的影响纳入电网运行,以防止组件上的应力,并避免在极端温度期间因无法满足需求而导致的停电。这个问题变得越来越重要,因为气候模型预测热浪的持续时间和频率会增加。在极端温度条件下失去电力不仅是一种不便,因为它还可能影响其他关键基础设施的可用性,如水卫生设备,运输系统,医院和其他紧急护理单位。在这个项目中,研究人员将寻求一种可能的解决方案,包括设计一种方法,用于在暴露于极端环境温度的配电系统中主动调度能源。电力公司传统上通过两种方式解决手头的问题:定义各种组件的动态热额定值(DTR),以根据环境温度调整其可用容量,最近,提供激励需求响应(DR)计划,用于在压力条件下远程关闭A/C单元。虽然在许多情况下是有效的,但容易受到重大弱点的影响。首先,DTR通常是通过经验或实验分配的,通常不适合封闭形式的数学计算。此外,基于A/C的DR通常基于公用事业公司和用户之间的合同协议来实现,并且确实结合了用户的福祉(即,由于空调关闭,用户将经历的室内温度)。在严重的热浪事件下,这可能会对健康产生负面影响,特别是对婴儿和老年人。本提案的目的是提高这两种工具的有效性。所提出的解决方案模拟了过高温度对组件的可用发电/输电容量的影响,以及由于过载或在恶劣条件下运行而导致的组件寿命预期缩短。通过开发房屋的热模型,将住宅的室内温度纳入DR调度,该模型可以根据内部和外部增益确定室内温度。这就产生了一个多目标设计问题,其目标是结合资产寿命和用户舒适度来优化成本。为了解决模型中固有的不确定性,采用了鲁棒优化方法。为了确保最优化问题的易处理性和所提出的解决方案的可扩展性,将使用标准的重构技术将非线性公式转换为凸的混合整数二次约束规划问题。此外,为了能够了解用户状况,将基于非侵入性监测建立算法,以使用智能电表提供的汇总测量来检测人类占用和A/C单元的状态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mina Sartipi其他文献
The Heavy Lifting Treatment Helper (HeaLTH) Algorithm: Streamlining the Clinical Trial Selection Process
举重治疗助手 (HeaLTH) 算法:简化临床试验选择流程
- DOI:
10.1007/978-3-030-63393-6_37 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Misagh B. Mansouri;Jeremiah Roland;Sree Nukala;Jin Cho;Mina Sartipi - 通讯作者:
Mina Sartipi
Single Camera-enabled Reinforcement Learning Traffic Signal Control System supporting Life-long Assessment
支持终身评估的单摄像头强化学习交通信号控制系统
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Toan V. Tran;Mina Sartipi - 通讯作者:
Mina Sartipi
Quality Assessment of Large-Scale Vehicle and Pedestrian Trajectories at Intersections
交叉口大型车辆和行人轨迹的质量评估
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.7
- 作者:
Junxuan Zhao;Austin Harris;Mina Sartipi - 通讯作者:
Mina Sartipi
Post-stroke discharge disposition prediction using deep learning
使用深度学习预测中风后出院处置
- DOI:
10.1109/secon.2017.7925299 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jin Cho;Zhen Hu;Mina Sartipi - 通讯作者:
Mina Sartipi
LaMMOn: language model combined graph neural network for multi-target multi-camera tracking in online scenarios
- DOI:
10.1007/s10994-024-06592-1 - 发表时间:
2024-07-15 - 期刊:
- 影响因子:2.900
- 作者:
Tuan T. Nguyen;Hoang H. Nguyen;Mina Sartipi;Marco Fisichella - 通讯作者:
Marco Fisichella
Mina Sartipi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mina Sartipi', 18)}}的其他基金
CCRI: New: RUI: Testbed as-a Service: A Sandbox for Fostering Smart and Connected City Research & Development
CCRI:新:RUI:测试床即服务:促进智能和互联城市研究的沙箱
- 批准号:
2120358 - 财政年份:2021
- 资助金额:
$ 11.98万 - 项目类别:
Standard Grant
US Ignite: Collaborative Research: Focus Area 1: Fleet Management of Large-Scale Connected and Autonomous Vehicles in Urban Settings
US Ignite:合作研究:重点领域 1:城市环境中大型联网自动驾驶车辆的车队管理
- 批准号:
1647161 - 财政年份:2017
- 资助金额:
$ 11.98万 - 项目类别:
Standard Grant
CPS: Small: RUI: CPS Foundations in Computation and Communication
CPS:小型:RUI:计算和通信中的 CPS 基础
- 批准号:
0932113 - 财政年份:2009
- 资助金额:
$ 11.98万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
- 批准号:
2411394 - 财政年份:2024
- 资助金额:
$ 11.98万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 11.98万 - 项目类别:
Standard Grant
Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
- 批准号:
2309728 - 财政年份:2023
- 资助金额:
$ 11.98万 - 项目类别:
Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
- 批准号:
2327702 - 财政年份:2023
- 资助金额:
$ 11.98万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
- 批准号:
2235231 - 财政年份:2023
- 资助金额:
$ 11.98万 - 项目类别:
Standard Grant
Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
- 批准号:
2240448 - 财政年份:2023
- 资助金额:
$ 11.98万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311596 - 财政年份:2023
- 资助金额:
$ 11.98万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311598 - 财政年份:2023
- 资助金额:
$ 11.98万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312205 - 财政年份:2023
- 资助金额:
$ 11.98万 - 项目类别:
Continuing Grant
Collaborative Research: Omnidirectional Perching on Dynamic Surfaces: Emergence of Robust Behaviors from Joint Learning of Embodied and Motor Control
合作研究:动态表面上的全方位栖息:从具身控制和运动控制的联合学习中出现鲁棒行为
- 批准号:
2230321 - 财政年份:2023
- 资助金额:
$ 11.98万 - 项目类别:
Standard Grant














{{item.name}}会员




