Printed and flexible photovoltaics from aqueous solutions with integrated power electronics for energy harvesting
具有用于能量收集的集成电力电子器件的水溶液印刷和柔性光伏发电
基本信息
- 批准号:1610899
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract:Non-TechnicalThis work aims to print flexible solar modules integrated with power electronics. Power electronics ensure that the maximum power is drawn from the solar module even if lighting conditions change. Printing electronics from solution is an additive process that could offer cost, energy and materials savings when compared to lithographic processes. For the power electronics, printed passive components'inductors, capacitors, and resistors will be integrated with silicon chips to ensure maximum performance in a flexible form factor. The intended solar modules will be printed from water-based inks eliminating the health and environment risks posed by typical organic solvents used in printed organic electronics. This project has the potential to take the necessary steps for the field of organic electronics, specifically organic photovoltaics, to evolve from single idealized devices to a low-cost mature technology. Emerging fields such as flexible and wearable electronics require a reliable manufacturing process for power supply and this work will impact flexible power harvesting systems and their integration with a load device. The proposed activities are addressing one of the biggest challenges of organic electronics: reliable manufacturing of flexible integrated devices for a specific application. Technical:In order to accomplish such a low-cost environmentally friendly energy harvesting system, this work will focus on three tasks. The first task is ink formulation for the components of the integrated power system. The aqueous inks for the active layer in the solar module will consist of nanoparticles fabricated using a mini-emulsion method. The work will characterize the variables in the fabrication process, using a combination of size, absorption, and electrical measurements to determine the compositions of materials that provide ideal morphology for photovoltaic performance. Polymers with different functional groups have been selected to determine how functional groups, which are known to affect a polymer's solubility and surface energy, also affect nanoparticle size and stability in water. Ink formulation will also take place for power electronic components, such as capacitors. The goal is to achieve high specific capacitance while maintaining fabrication reproducibility. The second task is to develop printing methods for polymer solar cells from aqueous inks and power electronic components. Blade coating and screen printing will be used for polymer solar cells and power electronics, respectively. Printed passive components will be developed, studied and characterized for maximum power point tracking, so that the solar cells may be operated efficiently in various irradiances. The third task is to integrate the organic solar cell modules with power electronics. Monolithically integrated solar modules will be designed and fabricated by printing series-connected solar cells, and the performance of the solar modules and maximum power point tracking circuit will be characterized under realistic practical conditions. The goal is to design a photovoltaic energy harvesting system that will perform at its maximum efficiency at both indoor and outdoor light intensities, with the intent of use with loads spanning a range of sensors, in addition to portable and wearable devices. In addition to these tasks, the project will utilize environmentally friendly methods to address the challenge presented by the use of organic solvents in a manufacturing process. For the outreach program it is planned to develop science modules for use with middle school students. The project will involve two REU programs, with one designed to involve community college students in the proposed research.
摘要:非技术性这项工作旨在打印与电力电子集成的柔性太阳能组件。即使照明条件发生变化,电力电子设备也能确保从太阳能组件获得最大功率。从溶液中印刷电子产品是一种添加工艺,与平版印刷工艺相比,它可以节省成本、能源和材料。对于电力电子器件,印刷无源元件的电感、电容器和电阻将与硅片集成在一起,以确保以灵活的外形规格实现最大性能。计划中的太阳能组件将由水性墨水打印,消除了印刷有机电子产品中使用的典型有机溶剂带来的健康和环境风险。该项目有可能为有机电子领域,特别是有机光伏领域采取必要的步骤,从单一的理想化设备演变为低成本的成熟技术。柔性和可穿戴电子等新兴领域需要可靠的电源制造工艺,这项工作将影响柔性集电系统及其与负载设备的集成。拟议的活动正在解决有机电子的最大挑战之一:为特定应用可靠地制造灵活的集成设备。技术:为了完成这样一个低成本、环保的能源收集系统,这项工作将重点做三项工作。第一项任务是为综合电力系统的部件进行墨水配方。太阳能组件中活动层的水性墨水将由使用微型乳胶法制造的纳米颗粒组成。这项工作将表征制造过程中的变量,使用尺寸、吸收和电测量相结合的方法来确定为光伏性能提供理想形态的材料的组成。具有不同官能团的聚合物被选择来确定官能团如何影响聚合物的溶解性和表面能,以及如何影响纳米粒子的尺寸和在水中的稳定性。墨水配方也将用于电力电子元件,如电容器。其目标是在保持制造重复性的同时获得高比电容。第二项任务是开发用水性墨水和电力电子元件打印聚合物太阳能电池的方法。聚合物太阳能电池和电力电子产品将分别使用刀片涂层和丝网印刷。印刷无源元件将被开发、研究和表征,用于最大功率点跟踪,以便太阳能电池可以在不同的辐射下有效地运行。第三项任务是将有机太阳能电池组件与电力电子相结合。通过印刷串联太阳能电池来设计和制造单片集成太阳能组件,并在现实实用条件下对太阳能组件和最大功率点跟踪电路的性能进行表征。我们的目标是设计一种光伏能量收集系统,在室内和室外光线强度下都能以最高效率运行,目的是在便携式和可穿戴设备的基础上,使用跨越一系列传感器的负载。除了这些任务外,该项目还将利用环境友好的方法来应对在制造过程中使用有机溶剂带来的挑战。对于外展计划,计划开发供中学生使用的科学模块。该项目将涉及两个REU项目,其中一个旨在让社区学院的学生参与拟议的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ana Arias其他文献
Comparative Antiatherogenic Effects of Intravenous AAV8- and AAV2-Mediated ApoA-IMilano Gene Transfer in Hypercholesterolemic Mice
静脉注射 AAV8 和 AAV2 介导的 ApoA-IMilano 基因转移对高胆固醇血症小鼠的抗动脉粥样硬化作用比较
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:2.6
- 作者:
Fang Tian;Lai Wang;Ana Arias;Mingjie Yang;B. Sharifi;P. Shah - 通讯作者:
P. Shah
Biorefineries as a driver for sustainability: Key aspects, actual development and future prospects
生物精炼厂作为可持续性的驱动力:关键方面、实际发展和未来前景
- DOI:
10.1016/j.jclepro.2023.137925 - 发表时间:
2023-09-15 - 期刊:
- 影响因子:10.000
- 作者:
Ana Arias;Gumersindo Feijoo;María Teresa Moreira - 通讯作者:
María Teresa Moreira
How could Artificial Intelligence be used to increase the potential of biorefineries in the near future? A review
在不久的将来,人工智能如何被用于提高生物精炼厂的潜力?综述
- DOI:
10.1016/j.eti.2023.103277 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:7.100
- 作者:
Ana Arias;Gumersindo Feijoo;Maria Teresa Moreira - 通讯作者:
Maria Teresa Moreira
Methodological guide and roadmap to assess the compliance of wastewater treatment plants with sustainability and circularity criteria
评估污水处理厂是否符合可持续性和循环性标准的方法指南与路线图
- DOI:
10.1016/j.watres.2025.123125 - 发表时间:
2025-04-15 - 期刊:
- 影响因子:12.400
- 作者:
Sofía Estévez;Ana Arias;Gumersindo Feijoo;María Teresa Moreira - 通讯作者:
María Teresa Moreira
Assessing the future prospects of emerging technologies for shipping and aviation biofuels: A critical review
评估新兴技术用于运输和航空生物燃料的未来前景:一项关键评论
- DOI:
10.1016/j.rser.2024.114427 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:16.300
- 作者:
Ana Arias;Chrysanthi-Elisabeth Nika;Vasileia Vasilaki;Gumersindo Feijoo;Maria Teresa Moreira;Evina Katsou - 通讯作者:
Evina Katsou
Ana Arias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ana Arias', 18)}}的其他基金
I-Corps: Low-cost biochemical sensors to optimize agricultural inputs
I-Corps:用于优化农业投入的低成本生化传感器
- 批准号:
2311400 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
I-Corps: Printed receive coils for Magnetic Resonance Imaging
I-Corps:用于磁共振成像的印刷接收线圈
- 批准号:
1712773 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Printed Organic Layers for Integrated Electronics: controlling processing to achieve stability and reproducibility
用于集成电子器件的印刷有机层:控制加工以实现稳定性和可重复性
- 批准号:
1202189 - 财政年份:2012
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似国自然基金
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
Energy Materials - Flexible Photovoltaics for Ambient IoT applications
能源材料 - 用于环境物联网应用的柔性光伏
- 批准号:
BB/X00502X/1 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Research Grant
SBIR Phase I: Flexible Internet of Things (IoT) Smart Label Powered by Organic Photovoltaics
SBIR 第一阶段:有机光伏驱动的灵活物联网 (IoT) 智能标签
- 批准号:
2112259 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Green flexible organic photovoltaics for energy-autonomous electronics
用于能源自主电子产品的绿色柔性有机光伏发电
- 批准号:
EP/V057839/1 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Fellowship
Flexible Photovoltaics with 2D-Material Heterostructures
具有二维材料异质结构的柔性光伏
- 批准号:
558711-2021 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Postgraduate Scholarships - Doctoral
Flexible Photovoltaics with 2D-Material Heterostructures
具有二维材料异质结构的柔性光伏
- 批准号:
558711-2021 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Postgraduate Scholarships - Doctoral
Challenge to the realization of dopant-free flexible solar cells that expand the application area of photovoltaics
挑战实现无掺杂柔性太阳能电池,扩大光伏应用领域
- 批准号:
20K20998 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Low-cost printed flexible solar cells as substitute for current (1st and 2nd generation) photovoltaics for building integrated applications in India
低成本印刷柔性太阳能电池替代当前(第一代和第二代)光伏发电,用于印度的建筑集成应用
- 批准号:
NE/S01344X/1 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Growth of GaAsPN alloys for flexible efficient photovoltaics
用于灵活高效光伏发电的 GaAsPN 合金的生长
- 批准号:
19K04488 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Feasibility of developing novel high-efficiency power management to enable indoor autonomous wireless devices powered by innovative flexible organic photovoltaics.
开发新型高效电源管理的可行性,使室内自主无线设备能够由创新的柔性有机光伏发电供电。
- 批准号:
131963 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Feasibility Studies
SBIR Phase I: Low-Cost Printable Photovoltaics on Flexible Plastics
SBIR 第一阶段:柔性塑料上的低成本可印刷光伏发电
- 批准号:
1448086 - 财政年份:2015
- 资助金额:
$ 36万 - 项目类别:
Standard Grant