Temperature at the nanoscale: thermal transport and abrupt interfaces
纳米尺度的温度:热传输和突变界面
基本信息
- 批准号:1611036
- 负责人:
- 金额:$ 50.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical abstractModern electronic devices contain millions of transistors generating waste heat. Removing this heat has become an increasing challenge. This is particularly important as the trend for both more and smaller transistors on a chip continues. The Principal Investigator has developed a new thermometry technique that allows the temperature of these nanoscale devices to be measured. Fahrenheit's original mercury-in-glass thermometer inferred temperature from the density changes of mercury. This technique does essentially the same thing at the nanoscale. It infers temperature changes from the density of the materials on the chip. The research team will use this new technique to study how heat flows in wires and at interfaces. The students involved in this project will receive training in state-of-the-art nanofabrication and microcopy techniques. Technical abstractIn this project a new thermometry technique will be applied to the study of heat transport at very small length scales, which is both poorly understood and extremely relevant to modern electronics. The technique, plasmon energy expansion thermometry (PEET), involves measuring a material's density very accurately, and then inferring the corresponding temperature using knowledge of the material's thermal expansion. This approach is based on the same principle as Fahrenheit's original mercury-in-glass thermometer, which also infers temperature from density changes. The key advance is that here the density can be mapped with nanoscale spatial resolution, which allows the technique to produce temperature maps with unprecedented resolution. The density is determined by measuring the material's bulk plasmon energy using electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). As part of their training, students will fabricate simple microelectronic devices. Then, using the electron microscope, they will map the temperatures that result from electrically activating the devices. By imaging the thermal gradients that result from the electrical currents, it will be possible to directly connect atomic-scale structures and interfaces to the effect they have on heat generation and transport.
现代电子设备包含数百万个产生废热的晶体管。 消除这种热量已成为一个越来越大的挑战。 这一点尤其重要,因为芯片上晶体管越来越多、越来越小的趋势仍在继续。 主要研究者开发了一种新的测温技术,可以测量这些纳米级设备的温度。 华氏最初的玻璃水银温度计是从水银的密度变化来推断温度的。 这项技术在纳米尺度上基本上做同样的事情。 它从芯片上材料的密度推断温度变化。 研究小组将使用这种新技术来研究热量如何在电线和界面处流动。 参与该项目的学生将接受最先进的纳米纤维和显微技术的培训。技术摘要在这个项目中,一种新的测温技术将被应用到非常小的长度尺度上的热传输的研究中,这是一种既不为人所知又与现代电子学极其相关的技术。 该技术,等离子体能量膨胀测温法(PEET),涉及非常精确地测量材料的密度,然后使用材料的热膨胀知识推断相应的温度。 这种方法基于与华氏最初的玻璃水银温度计相同的原理,也是从密度变化推断温度。 关键的进步是,这里的密度可以用纳米级的空间分辨率来绘制,这使得该技术能够以前所未有的分辨率绘制温度图。 密度通过在扫描透射电子显微镜(STEM)中使用电子能量损失谱(EELS)测量材料的体等离子体能量来确定。 作为培训的一部分,学生将制作简单的微电子器件。 然后,使用电子显微镜,他们将绘制出电激活设备所产生的温度。通过对电流产生的热梯度进行成像,将有可能直接将原子尺度的结构和界面与它们对热量产生和传输的影响联系起来。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Visualizing the Electron Wind Force in the Elastic Regime
- DOI:10.1021/acs.nanolett.1c02641
- 发表时间:2021-12-22
- 期刊:
- 影响因子:10.8
- 作者:Mecklenburg, Matthew;Zutter, Brian T.;Regan, B. C.
- 通讯作者:Regan, B. C.
Mapping Charge Recombination and the Effect of Point-Defect Insertion in GaAs Nanowire Heterojunctions
GaAs 纳米线异质结中电荷复合的映射和点缺陷插入的影响
- DOI:10.1103/physrevapplied.16.044030
- 发表时间:2021
- 期刊:
- 影响因子:4.6
- 作者:Zutter, Brian T.;Kim, Hyunseok;Hubbard, William A.;Ren, Dingkun;Mecklenburg, Matthew;Huffaker, Diana;Regan, B.C.
- 通讯作者:Regan, B.C.
Imaging Dielectric Breakdown in Valence Change Memory
- DOI:10.1002/adfm.202102313
- 发表时间:2021-09-30
- 期刊:
- 影响因子:19
- 作者:Hubbard, William A.;Lodico, Jared J.;Regan, Brian C.
- 通讯作者:Regan, Brian C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BC Regan其他文献
BC Regan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BC Regan', 18)}}的其他基金
Uncovering the atomic origins of thin film ferroelectricity
揭示薄膜铁电性的原子起源
- 批准号:
2004897 - 财政年份:2020
- 资助金额:
$ 50.3万 - 项目类别:
Standard Grant
Blackbody Radiation in the Nanothermodynamic Limit
纳米热力学极限的黑体辐射
- 批准号:
1206849 - 财政年份:2012
- 资助金额:
$ 50.3万 - 项目类别:
Continuing Grant
CAREER: Blackbody radiation in the nanothermodynamic limit
职业生涯:纳米热力学极限的黑体辐射
- 批准号:
0748880 - 财政年份:2008
- 资助金额:
$ 50.3万 - 项目类别:
Continuing Grant
相似海外基金
ERI: Molecular-level Characterization of Water-in-Salt Electric Double-Layer Capacitors: Nanoscale Thermal Effects on Differential Capacitance
ERI:盐包水双电层电容器的分子级表征:微分电容的纳米级热效应
- 批准号:
2347562 - 财政年份:2024
- 资助金额:
$ 50.3万 - 项目类别:
Standard Grant
Controlling thermal transport of solids by tailored dynamic nanoscale disorders
通过定制的动态纳米级紊乱控制固体的热传输
- 批准号:
23KF0022 - 财政年份:2023
- 资助金额:
$ 50.3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Alternative transducer and optical pumping scheme for nanoscale thermal metrology and imaging
用于纳米级热计量和成像的替代传感器和光泵浦方案
- 批准号:
2315077 - 财政年份:2023
- 资助金额:
$ 50.3万 - 项目类别:
Standard Grant
Stability of nanoscale particles in Oxide-Dispersion-Strengthened (ODS) steels under extremely large and multi-directional deformation conditions
氧化物弥散强化(ODS)钢中纳米级颗粒在极大和多向变形条件下的稳定性
- 批准号:
23K13087 - 财政年份:2023
- 资助金额:
$ 50.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Understanding the role of water molecule diffusion in nanoscale heat transfer for improving thermal energy output of thermochemical heat storage material
了解水分子扩散在纳米级传热中的作用,以提高热化学储热材料的热能输出
- 批准号:
23K13818 - 财政年份:2023
- 资助金额:
$ 50.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Thermal resonance induced by quasi-Casimir coupling for innovative nanoscale thermal management
准卡西米尔耦合引起的热共振,用于创新的纳米级热管理
- 批准号:
22K20412 - 财政年份:2022
- 资助金额:
$ 50.3万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Thermal hotspots detection in nanoscale two-dimensional electronics
纳米级二维电子学中的热热点检测
- 批准号:
DE220100487 - 财政年份:2022
- 资助金额:
$ 50.3万 - 项目类别:
Discovery Early Career Researcher Award
Nanoscale Temperature Mapping and Thermal Regulation of Intracellular Dynamics
纳米级温度测绘和细胞内动力学的热调节
- 批准号:
10502123 - 财政年份:2022
- 资助金额:
$ 50.3万 - 项目类别:
Nanoscale Temperature Mapping and Thermal Regulation of Intracellular Dynamics
纳米级温度测绘和细胞内动力学的热调节
- 批准号:
10687130 - 财政年份:2022
- 资助金额:
$ 50.3万 - 项目类别:
HPF-X: High-pressure freezing with buffer exchange
HPF-X:带有缓冲液交换的高压冷冻
- 批准号:
10704139 - 财政年份:2022
- 资助金额:
$ 50.3万 - 项目类别: