OP: Collaborative Research: Coherent Integrated Si-Photonic Links

OP:协作研究:相干集成硅光子链路

基本信息

  • 批准号:
    1611086
  • 负责人:
  • 金额:
    $ 14.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2016-11-30
  • 项目状态:
    已结题

项目摘要

Our society is on the cusp of a new revolution in integrated circuit technology and manufacturing. The new technology will successfully combine electronic and photonic systems creating previously unimagined functionality and performance. Such sophisticated electronic-photonic systems-on-chip with highly-efficient use of area, energy and spectral resources are critically needed in many communication scenarios. For example, current data-centers and high-performance supercomputers are both power-constrained. High-bandwidth density and high-energy efficiency photonic interconnects would allow the connectivity down to the processor chip level increasing the power-efficiency and utilization of the whole data-center, significantly impacting the national energy consumption in the next decade. However, the lack of large-scale integration approach, design methodology and unified cross-layer design has prevented the realization of these systems. The impact of the electronic-photonic designs and system design methodology proposed in this project spans not only communication systems, but also a variety of other sophisticated electronic-photonic systems (e.g. detection, sensing, and instrumentation). The multi-disciplinary work will educate a unique crop of engineers and scientists that cross the boundaries of electronic and photonic systems. The objective of the research project is to utilize recently developed large-scale electronic-photonic integration approaches to design short-reach coherent-modulation photonic links that significantly improve the area, energy and spectral-efficiency. The proposed electronic-photonic circuit topologies for coherent high-order modulation transmitters and receivers leverage the advantages of each domain and correct for the non-idealities in the other. Starting from the modeling and simulation infrastructure, the proposed research comprises a unique simulation and modeling framework in Verilog-A, which allows for true co-simulation of photonic and electronic circuits, under large signal, non-linear, time-varying conditions. This capability gives vital insights into the interaction of electronic and photonic circuits. It is essential for the use of the resonant components as the second key ingredient in designing efficient electronic-photonic communication systems. Although energy and area efficient, the resonant components require sophisticated wavelength stabilization loops and electronic drive to compensate for their transfer-function characteristics, which are enabled by the co-simulation methodology and abundance of high-performance transistors in the proposed integration approaches.
我们的社会正处于集成电路技术和制造新革命的风口浪尖。这项新技术将成功地结合电子和光子系统,创造出以前无法想象的功能和性能。这种复杂的片上电子-光子系统在许多通信场景中都是迫切需要的,它能高效地利用面积、能量和频谱资源。例如,当前的数据中心和高性能超级计算机都受到功率限制。高带宽密度和高能效的光子互连将使连接下降到处理器芯片水平,提高整个数据中心的功率效率和利用率,对未来十年的国家能源消耗产生重大影响。然而,缺乏大规模集成的方法、设计方法和统一的跨层设计阻碍了这些系统的实现。本项目中提出的电子-光子设计和系统设计方法的影响不仅涵盖通信系统,还包括各种其他复杂的电子-光子系统(例如检测,传感和仪器仪表)。这项多学科的工作将培养出一批独特的工程师和科学家,他们将跨越电子和光子系统的界限。本研究计划的目标是利用最近发展的大规模电子-光子集成方法来设计短距离相干调制光子链路,以显着提高面积,能量和频谱效率。提出的相干高阶调制发射机和接收机的电子-光子电路拓扑利用了每个域的优点,并纠正了另一个域的非理想性。从建模和仿真基础设施开始,提出的研究包括Verilog-A中独特的仿真和建模框架,该框架允许在大信号,非线性,时变条件下对光子和电子电路进行真正的联合仿真。这种能力为电子和光子电路的相互作用提供了重要的见解。在设计高效的电子-光子通信系统时,谐振元件的使用是必不可少的第二要素。虽然能量和面积效率高,但谐振元件需要复杂的波长稳定回路和电子驱动来补偿其传递函数特性,这是通过联合仿真方法和所提出的集成方法中的大量高性能晶体管实现的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Milos Popovic其他文献

Keeping Friends Close, and Their Oil Closer: Rethinking the Role of the Shanghai Cooperation Organization in China's Strive for Energy Security in Kazakhstan
拉近朋友,拉近石油:重新思考上海合作组织在中国争取哈萨克斯坦能源安全中的作用
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Milos Popovic
  • 通讯作者:
    Milos Popovic
The landscape of high-affinity human antibodies against intratumoral antigens
针对肿瘤内抗原的高亲和力人类抗体的前景
  • DOI:
    10.1101/2021.02.06.430058
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Rakocevic;I. Glotova;I. de Santiago;B. Ç. Toptas;Milena Popovic;Milos Popovic;D. Leone;A. Stachyra;R. Rozenfeld;Deniz Kural;D. Biasci
  • 通讯作者:
    D. Biasci
Special collection in association with the 2024 International Conference on Aging, Innovation and Rehabilitation
  • DOI:
    10.1186/s12938-025-01427-z
  • 发表时间:
    2025-07-14
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Babak Taati;Milos Popovic
  • 通讯作者:
    Milos Popovic
Fragile Proxies: Explaining Rebel Defection Against Their State Sponsors
脆弱的代理人:解释叛乱分子背叛其国家赞助者的原因
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Milos Popovic
  • 通讯作者:
    Milos Popovic
Poster 42 Impact of increasing intensity of occupational therapy on functional outcomes in sub-acute SCI
  • DOI:
    10.1016/j.apmr.2013.08.247
  • 发表时间:
    2013-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Milos Popovic
  • 通讯作者:
    Milos Popovic

Milos Popovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Milos Popovic', 18)}}的其他基金

Collaborative Research: FuSe: Collaborative Optically Disaggregated Arrays of Extreme-MIMO Radio Units (CODAeMIMO)
合作研究:FuSe:Extreme-MIMO 无线电单元的协作光学分解阵列 (CODAeMIMO)
  • 批准号:
    2328946
  • 财政年份:
    2023
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Continuing Grant
ASCENT: Collaborative Research: Scaling Distributed AI Systems based on Universal Optical I/O
ASCENT:协作研究:基于通用光学 I/O 扩展分布式人工智能系统
  • 批准号:
    2023751
  • 财政年份:
    2020
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
RAISE-EQuIP: Single-Chip, Wall-Plug Photon Pair Source and CMOS Quantum Systems on Chip
RAISE-EQuIP:单芯片、壁插式光子对源和 CMOS 量子片上系统
  • 批准号:
    1842692
  • 财政年份:
    2018
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Coherent Integrated Si-Photonic Links
OP:协作研究:相干集成硅光子链路
  • 批准号:
    1701596
  • 财政年份:
    2016
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
Molding Optical Field Patterns for Highly Efficient Design of Strong-Confinement Photonic Devices
用于强约束光子器件高效设计的模塑光场图案
  • 批准号:
    1128709
  • 财政年份:
    2011
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
  • 批准号:
    2127235
  • 财政年份:
    2021
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
  • 批准号:
    2114312
  • 财政年份:
    2021
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
  • 批准号:
    2127331
  • 财政年份:
    2021
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
Collaborative Research: OP: Transition Metal Alloys: Emergent Properties for Near-Infrared Hot-Carrier Optoelectronics
合作研究:OP:过渡金属合金:近红外热载流子光电器件的新兴特性
  • 批准号:
    2114304
  • 财政年份:
    2021
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Development of Advanced Image Reconstruction Methods for Pre-Clinical Applications of Photoacoustic Computed Tomography
OP:合作研究:光声计算机断层扫描临床前应用的先进图像重建方法的开发
  • 批准号:
    1938702
  • 财政年份:
    2019
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
  • 批准号:
    1709601
  • 财政年份:
    2017
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Active Speckle Control and Fast Speckle Statistics to Drastically Improve the Contrast Ratio of Exoplanet Direct Imaging
OP:协作研究:主动散斑控制和快速散斑统计显着提高系外行星直接成像的对比度
  • 批准号:
    1710514
  • 财政年份:
    2017
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Novel Feature-Based, Randomized Methods for Large-Scale Inversion
OP:协作研究:用于大规模反演的基于特征的新颖随机方法
  • 批准号:
    1720291
  • 财政年份:
    2017
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
  • 批准号:
    1709275
  • 财政年份:
    2017
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Active Speckle Control and Fast Speckle Statistics to Drastically Improve the Contrast Ratio of Exoplanet Direct Imaging
OP:协作研究:主动散斑控制和快速散斑统计显着提高系外行星直接成像的对比度
  • 批准号:
    1710210
  • 财政年份:
    2017
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了