Model for the prediction of thermomechanical bulk properties of multicomponent oxide glasses based on a combined quantum mechanical and thermodynamic approach

基于量子力学和热力学相结合的方法预测多组分氧化物玻璃的热机械整体性能的模型

基本信息

项目摘要

The present project is inspired by the motivation to deeply root the understanding of the relation among chemical composition, structure, and thermomechanical properties of glasses in scientific concepts. The objective is the development of a model enabling quantitative exploration of compositional space for areas with outstanding mechanical properties, and its consequent use in materials design. The model shall be directed towards the bulk mechanical bulk properties of multicomponent oxide glasses. It starts from the working hypothesis of equivalency of structural short-range order groupings in such glasses, and the corresponding structures found in the isochemical crystalline states. This hypothesis is well substantiated with respect to thermochemical properties, however, yet unexploited with respect to mechanical properties, in part because of a lack of understanding – or even availability – of fundamental data for the crystals. The envisaged model attemps to establish the wide bridge from single crystals to multicomponent glasses by a combined approach. This is, firstly, a quantum mechanics based ab initio approach; it is directed towards the assessment of crystal structures and properties as well as towards an understanding why certain structures stand out with respect to their properties. This is, secondly, a thermodynamic approach directed towards assessing the differences between one-components glasses and isochemical crystals in terms of phenomenological quantities, and towards the superimposition of such data to the properties of multicomponent glass matrices. Here, “multi” in the sense of the project refers to typically > 5 functional oxide components as found in most industrial glass products. The system MgO-CaO-Al2O3-SiO2-P2O5 is depicted as compositional basis. The experimental work envisaged for this project aims, firstly, at a phenomenological assessment of the differences between selected single crystals and their isochemical counterparts. As these differences are most sensitively reflected by the differences in low-T heat capacities, low-T microcalorimetry shall be performed (external cooperation). The experimental determination of the mechanical bulk properties of one-component glasses serves the same purpose. These properties shall be determined acoustically by impuls excitation technique. The same technique will be applied to extensively verify model predictions for multicomponent matrices. The usefulness of the model for materials design shall be demonstrated at the end of the project for a few cases.
本项目的灵感来自于将玻璃的化学组成、结构和热机械性能之间的关系深深植根于科学概念的动机。我们的目标是开发一个模型,使定量探索的组成空间的地区具有出色的机械性能,并随后在材料设计中使用。该模型应针对多组分氧化物玻璃的整体机械整体性能。它从工作假设的等效结构短程有序集团在这样的玻璃,和相应的结构中发现的等化学结晶状态。这一假设在热化学性质方面得到了很好的证实,然而,在机械性质方面尚未得到利用,部分原因是缺乏对晶体基本数据的理解-甚至可用性。设想的模型试图通过组合方法建立从单晶到多组分玻璃的宽桥。首先,这是一种基于量子力学的从头算方法;它旨在评估晶体结构和性质,以及理解为什么某些结构在其性质方面脱颖而出。这是,第二,一个热力学的方法,针对评估单组分玻璃和等化学晶体之间的差异方面的现象学的数量,并对这些数据的叠加多组分玻璃矩阵的属性。在此,项目意义上的“多”通常是指在大多数工业玻璃产品中发现的> 5种功能性氧化物组分。MgO-CaO-Al_2O_3-SiO_2-P_2O_5系统是组成基础。该项目设想的实验工作的目的首先是对选定的单晶与其等化学对应物之间的差异进行现象学评估。由于这些差异最敏感地反映在低热热容的差异上,因此应进行低热微量热测定(外部合作)。单组分玻璃的机械整体性质的实验测定也是为了同样的目的。这些性能应通过脉冲激励技术进行声学测定。同样的技术将被应用于广泛验证多组分基质的模型预测。材料设计模型的实用性应在项目结束时在少数情况下得到证明。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Reinhard Conradt其他文献

Professor Dr. Reinhard Conradt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Reinhard Conradt', 18)}}的其他基金

Initiatoren lokaler Glaskorrosion
局部玻璃腐蚀的引发剂
  • 批准号:
    135904720
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Theoretische und experimentelle Untersuchung der Verdampfungsmechanismen am Beispiel glasbildender Borosilicatschmelzen
以玻璃形成硼硅酸盐熔体为例对蒸发机理进行理论和实验研究
  • 批准号:
    5416032
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Experimentelle Bestimmung thermochemischer Daten und Eigenschaftsmodellierung komplexer Silikatsysteme
复杂硅酸盐体系热化学数据和性能建模的实验测定
  • 批准号:
    5129466
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
  • 批准号:
    82372016
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
高性能纤维混凝土构件抗爆的强度预测
  • 批准号:
    51708391
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
隧道超前探测的三分量光纤地震加速度检波机理与应用研究
  • 批准号:
    51079080
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
非编码RNA与蛋白质相互作用预测算法的研究
  • 批准号:
    31000586
  • 批准年份:
    2010
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
  • 批准号:
    2406511
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
  • 批准号:
    2412195
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Audiphon (Auditory models for automatic prediction of phonation)
Audiphon(用于自动预测发声的听觉模型)
  • 批准号:
    24K03872
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A robust ensemble Kalman filter to innovate short-range severe weather prediction
强大的集成卡尔曼滤波器创新短程恶劣天气预测
  • 批准号:
    24K07131
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Data-driven prediction of fatigue crack nucleation in directionally-solidified Ni-based superalloys
定向凝固镍基高温合金疲劳裂纹形核的数据驱动预测
  • 批准号:
    24K07230
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
  • 批准号:
    2344357
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
I(eye)-SCREEN: A real-world AI-based infrastructure for screening and prediction of progression in age-related macular degeneration (AMD) providing accessible shared care
I(eye)-SCREEN:基于人工智能的现实基础设施,用于筛查和预测年龄相关性黄斑变性 (AMD) 的进展,提供可及的共享护理
  • 批准号:
    10102692
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Prediction, Monitoring and Personalized Recommendations for Prevention and Relief of Dementia and Frailty
预防和缓解痴呆症和衰弱的预测、监测和个性化建议
  • 批准号:
    10103541
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Multi-variable based vegetation monitoring and prediction during droughts
干旱期间基于多变量的植被监测与预测
  • 批准号:
    FT230100209
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了