Geometry of discrete spaces and spectral theory of non-local operators
离散空间几何与非局部算子谱理论
基本信息
- 批准号:224063881
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2012
- 资助国家:德国
- 起止时间:2011-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of geometry and its impact on spectral and stochastic features of Laplacians and their semigroups plays a central role in many areas of mathematics such as metric geometry, probability and operator theory. Despite the well known analogies between Laplacians on manifolds and Laplacians on graphs, various discoveries were made in recent years that show a clear disparity between discrete and continuum spaces. This, in particular, lead to significant interest in basic geometry as encoded in notions such as distance and curvature for discrete spaces. The aim of this project is to develop a deep understanding of basic geometry on discrete spaces and study applications for Laplacians on graphs. These applications concern mostly global properties and involve in particular the following topics:- Spectral theory (spectral estimates, absence of essential spectrum, unique continuation,stability of spectral types).- The heat equation (stochastic completeness, long term behavior, uniqueness and existence of ground states).- Selfadjoint extensions (essential selfadjointness, negligibility of boundary).We consider graph Laplacians as the key example of non-local regular Dirichlet forms and we aim at developing the corresponding parts of the theory with general non-local Dirichlet forms in mind. Given the well established theory for strongly local Dirichlet forms this should serve as an important step towards a unified treatment for all regular Dirichlet forms.
几何的研究及其对拉普拉斯算子及其半群的谱和随机特征的影响在数学的许多领域中起着核心作用,如度量几何,概率和算子理论。尽管流形上的拉普拉斯算子和图上的拉普拉斯算子之间有着众所周知的类比,但近年来的各种发现表明离散空间和连续空间之间存在着明显的差异。特别是,这导致了对基本几何的极大兴趣,这些几何编码在离散空间的距离和曲率等概念中。该项目的目的是发展对离散空间基本几何的深入理解,并研究拉普拉斯算子在图上的应用。这些应用主要涉及全局性质,特别是涉及以下主题:-谱理论(谱估计,基本谱的缺乏,独特的延续,谱类型的稳定性)。热方程(随机完整性,长期行为,基态的唯一性和存在性)。自伴扩展(本质自伴性,边界可忽略性)。我们认为图拉普拉斯算子作为非局部正则狄利克雷形式的关键例子,我们的目标是发展理论的相应部分,考虑到一般的非局部狄利克雷形式。鉴于建立良好的理论强地方狄利克雷形式,这应该作为一个重要的一步,统一处理所有经常狄利克雷形式。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Volume growth and bounds for the essential spectrum for Dirichlet forms
- DOI:10.1112/jlms/jdt029
- 发表时间:2012-05
- 期刊:
- 影响因子:0
- 作者:Sebastian Haeseler;M. Keller;Radoslaw K. Wojciechowski
- 通讯作者:Sebastian Haeseler;M. Keller;Radoslaw K. Wojciechowski
SPECTRAL ANALYSIS OF CERTAIN SPHERICALLY HOMOGENEOUS GRAPHS
- DOI:10.7153/oam-07-46
- 发表时间:2013-12-01
- 期刊:
- 影响因子:0.5
- 作者:Breuer, Jonathan;Keller, Matthias
- 通讯作者:Keller, Matthias
Harmonic functions of general graph Laplacians
- DOI:10.1007/s00526-013-0677-6
- 发表时间:2013-10
- 期刊:
- 影响因子:2.1
- 作者:B. Hua;M. Keller
- 通讯作者:B. Hua;M. Keller
Remarks on curvature dimension conditions on graphs
- DOI:10.1007/s00526-016-1104-6
- 发表时间:2017-01
- 期刊:
- 影响因子:2.1
- 作者:Florentin Münch
- 通讯作者:Florentin Münch
Graphs of finite measure
- DOI:10.1016/j.matpur.2014.10.006
- 发表时间:2013-09
- 期刊:
- 影响因子:0
- 作者:Agelos Georgakopoulos;Sebastian Haeseler;M. Keller;D. Lenz;Radoslaw K. Wojciechowski
- 通讯作者:Agelos Georgakopoulos;Sebastian Haeseler;M. Keller;D. Lenz;Radoslaw K. Wojciechowski
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Daniel Lenz其他文献
Professor Dr. Daniel Lenz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Daniel Lenz', 18)}}的其他基金
Zufällige und periodische Quantengraphen
随机和周期性量子图
- 批准号:
122735888 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
离散谱聚合与谱廓受限的传输理论与技术的研究
- 批准号:60972057
- 批准年份:2009
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
RUI: Point Configurations in Euclidean Spaces, Spheres, and Discrete Spaces
RUI:欧几里得空间、球体和离散空间中的点配置
- 批准号:
2054536 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Geometry analysis on discrete spaces under a lower Ricci curvature bound
里奇曲率下界下离散空间的几何分析
- 批准号:
21K20315 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
RUI: Embeddings of Discrete Metric Spaces into Banach Spaces
RUI:将离散度量空间嵌入 Banach 空间
- 批准号:
1953773 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
RI: Small: Learning discrete structure from continuous spaces
RI:小:从连续空间学习离散结构
- 批准号:
2050360 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Construction of Consistent Computational Geometry in Discrete Spaces
离散空间中一致计算几何的构建
- 批准号:
20H04143 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
RI: Small: Learning discrete structure from continuous spaces
RI:小:从连续空间学习离散结构
- 批准号:
1815697 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Explicit study of hyperplane arrangements and related stratified spaces via discrete structures
通过离散结构对超平面排列和相关分层空间的显式研究
- 批准号:
18H01115 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
RUI: Embeddings of Discrete Metric Spaces into Banach Spaces
RUI:将离散度量空间嵌入 Banach 空间
- 批准号:
1700176 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
"New Smoothness Spaces on Domains and Their Discrete Characterization"
“域上的新平滑空间及其离散特征”
- 批准号:
373295677 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Constructing structure theories of quandles and discrete symmetric spaces
构建四维空间和离散对称空间的结构理论
- 批准号:
16K13757 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research