Geometry of manifolds with large volume

大体积流形的几何形状

基本信息

  • 批准号:
    1611851
  • 负责人:
  • 金额:
    $ 22.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

A thin rubber sphere can be stretched, pushed in, and otherwise distorted so that its roundness is lost. For instance, one can contract the equator to transform the round sphere into an hourglass. While the neck of the hourglass does not look much like a round sphere anymore, the two bulbs are still pretty round. The celebrated Gauss-Bonnet theorem says that in some precise sense, no matter how the sphere is distorted, the average geometry of the result will still be round. Mathematicians view this result as an example where the topology of an object (i.e., the fact that it was produced by distorting a round sphere) constrains its geometry. The broad theme of this proposal is to develop similar results pertaining to higher dimensional abstract geometric objects. Thurston's Geometrization Conjecture, proved by Perelman in 2003, states that every closed three-manifold can be cut into pieces, each of which admits one of eight types of homogenous metrics. Of these pieces, only the hyperbolic three-manifolds have not been classified. The full statement of the Perelman's result includes topological conditions that characterize when a closed three-manifold M admits a hyperbolic metric. Mostow's Rigidity Theorem implies that a hyperbolic metric on such an M is unique, if it exists, so it is natural to try to extract concrete geometric information about the metric from the topology of M. Effective geometrization, studied by the PI and his collaborators, is a program to extract concrete geometric information about a hyperbolic metric on a three-dimensional manifold from its topology. A large part of this project involves finding a description of the geometry of M given only that the number of elements needed to generate the fundamental group of M is bounded, or that M has a topological decomposition with certain characteristics. The key technique is to understand a sequence of closed hyperbolic three-manifolds asymptotically by passing to geometric limits. This perspective will also be applied outside of hyperbolic geometry, in the study of the growth of Betti numbers in sequences of higher rank locally symmetric spaces, in a program inspired by an active field in graph theory.
一个薄的橡胶球可以被拉伸、推入或扭曲,从而失去其圆度。例如,可以收缩赤道以将圆形球体转换为沙漏。虽然沙漏的颈部看起来不再像一个圆球,但两个灯泡仍然很圆。著名的高斯-博内定理说,在某种精确的意义上,无论球体如何扭曲,结果的平均几何形状仍然是圆的。数学家将这一结果视为一个例子,其中对象的拓扑结构(即,它是通过扭曲圆形球体而产生的事实)约束了它的几何形状。这个建议的广泛主题是开发类似的结果有关高维抽象几何对象。Perelman在2003年证明的Thurston的几何化猜想指出,每个封闭的三流形都可以被切割成碎片,每个碎片都允许八种类型的齐次度量之一。在这些作品中,只有双曲三流形没有被分类。 佩雷尔曼结果的完整陈述包括表征封闭三流形M接受双曲度量时的拓扑条件。Mostow刚性定理意味着这样的M上的双曲度量是唯一的,如果它存在的话,所以很自然地试图从M的拓扑中提取关于度量的具体几何信息。PI及其合作者研究的有效几何化是一个从三维流形的拓扑结构中提取有关三维流形上双曲度量的具体几何信息的程序。这个项目的很大一部分涉及到找到一个描述的几何M只给需要产生的基本组M的元素的数量是有界的,或M有一个拓扑分解与某些特点。其关键技术是通过几何极限来渐近地理解闭双曲三流形序列。这种观点也将适用于双曲几何以外,在研究的增长贝蒂数序列的高秩局部对称空间,在一个程序的灵感来自一个活跃的领域在图论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ian Biringer其他文献

A finiteness theorem for hyperbolic 3‐manifolds
双曲3流形的有限定理
Unimodularity of Invariant Random Subgroups
不变随机子群的幺模性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ian Biringer;O. Tamuz
  • 通讯作者:
    O. Tamuz
Metrizing the Chabauty topology
  • DOI:
    10.1007/s10711-017-0274-5
  • 发表时间:
    2017-07-17
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Ian Biringer
  • 通讯作者:
    Ian Biringer
Intersection growth in groups
群体交叉增长
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ian Biringer;K. Bou;M. Kassabov;Francesco Matucci
  • 通讯作者:
    Francesco Matucci
G'eom'etrie et topologie des vari'et'es hyperboliques de grand volume
大体积的各种双曲线拓扑和拓扑
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ian Biringer;J. Raimbault
  • 通讯作者:
    J. Raimbault

Ian Biringer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ian Biringer', 18)}}的其他基金

CAREER: Rank, genus and Betti numbers of large-volume manifolds
职业:大体积流形的秩、亏格和贝蒂数
  • 批准号:
    1654114
  • 财政年份:
    2017
  • 资助金额:
    $ 22.77万
  • 项目类别:
    Continuing Grant
Asymptotic methods in groups and locally symmetric spaces
群和局部对称空间中的渐近方法
  • 批准号:
    1308678
  • 财政年份:
    2012
  • 资助金额:
    $ 22.77万
  • 项目类别:
    Standard Grant
Asymptotic methods in groups and locally symmetric spaces
群和局部对称空间中的渐近方法
  • 批准号:
    1207828
  • 财政年份:
    2012
  • 资助金额:
    $ 22.77万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0902991
  • 财政年份:
    2009
  • 资助金额:
    $ 22.77万
  • 项目类别:
    Fellowship Award

相似海外基金

Conference: St. Louis Topology Conference: Flows and Foliations in 3-Manifolds
会议:圣路易斯拓扑会议:3 流形中的流动和叶理
  • 批准号:
    2350309
  • 财政年份:
    2024
  • 资助金额:
    $ 22.77万
  • 项目类别:
    Standard Grant
Geodesic arcs and surfaces for hyperbolic knots and 3-manifolds
双曲结和 3 流形的测地线弧和曲面
  • 批准号:
    DP240102350
  • 财政年份:
    2024
  • 资助金额:
    $ 22.77万
  • 项目类别:
    Discovery Projects
Diffusions and jump processes on groups and manifolds
群和流形上的扩散和跳跃过程
  • 批准号:
    2343868
  • 财政年份:
    2024
  • 资助金额:
    $ 22.77万
  • 项目类别:
    Continuing Grant
CAREER: Nonlinear Finite Element Manifolds for Improved Simulation of Shock-Dominated Turbulent Flows
职业:用于改进冲击主导的湍流模拟的非线性有限元流形
  • 批准号:
    2338843
  • 财政年份:
    2023
  • 资助金额:
    $ 22.77万
  • 项目类别:
    Continuing Grant
Surfaces in 4-manifolds and modified surgery theory
4 流形表面和改进的手术理论
  • 批准号:
    2347230
  • 财政年份:
    2023
  • 资助金额:
    $ 22.77万
  • 项目类别:
    Standard Grant
Non-semisimple quantum invariants of three and four manifolds
三流形和四流形的非半简单量子不变量
  • 批准号:
    2304990
  • 财政年份:
    2023
  • 资助金额:
    $ 22.77万
  • 项目类别:
    Standard Grant
Equivariant index theory of infinite-dimensional manifolds and related topics
无限维流形等变指数理论及相关主题
  • 批准号:
    23K12970
  • 财政年份:
    2023
  • 资助金额:
    $ 22.77万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ergodic Properties of Smooth Systems on Manifolds
流形上光滑系统的遍历性质
  • 批准号:
    2247572
  • 财政年份:
    2023
  • 资助金额:
    $ 22.77万
  • 项目类别:
    Standard Grant
Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
  • 批准号:
    2304841
  • 财政年份:
    2023
  • 资助金额:
    $ 22.77万
  • 项目类别:
    Continuing Grant
Symplectic cohomology and quantum cohomology of Fano manifolds
Fano流形的辛上同调和量子上同调
  • 批准号:
    2306204
  • 财政年份:
    2023
  • 资助金额:
    $ 22.77万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了