Asymptotic methods in groups and locally symmetric spaces
群和局部对称空间中的渐近方法
基本信息
- 批准号:1308678
- 负责人:
- 金额:$ 15.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-29 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is often useful to understand a class or sequence of spaces through its geometric limits. The PI proposes five projects applying such asymptotic methods to topology, geometry and group theory. First, the PI will study the large-scale geometry of closed hyperbolic 3-manifolds whose fundamental groups can be generated by a fixed number of elements. Second, the PI will study algebraic and geometric limits of convex cocompact handlebodies and their relation to the extension of homeomorphisms of a 3-manifold's boundary into its interior. In group theory, the PI hopes to investigate the quasi-isometric rigidity of mapping tori of certain free group automorphisms and the asymptotic growth of the index of the intersection of all index n subgroups of a group. Finally, the PI hopes to promote and expand the exciting new topic of `invariant random subgroups' of Lie groups, which he and Abert et al used to control the growth of Betti numbers of higher rank locally symmetric spaces.The study of geometric shapes of 2 and 3 dimensions has rapidly evolved in the past 40 years, partly due to revolutionary work of William Thurston in the 1970's. Thurston was one of the first to realize the particular utility of 'geometric degenerations' in these low dimensions. A geometric degeneration can be thought of as a deformation of a shape that possibly changes its type at the end: for instance, a sphere with a shrinking radius degenerates to a point and a vertical cylinder with fixed height and shrinking circumference degenerates to a line segment. The goal of the proposed project is to use geometric degenerations to analyze a variety of low-dimensional shapes, especially 3-dimensional manifolds, of which our universe is an example.
通过空间的几何极限来理解一类空间或一系列空间通常是有用的。PI提出了将这种渐近方法应用于拓扑,几何和群论的五个项目。首先,PI将研究闭双曲3-流形的大尺度几何,其基本群可以由固定数量的元素生成。其次,PI将研究凸紧柄体的代数和几何极限,以及它们与3流形边界同胚向其内部扩展的关系。在群论中,PI希望研究某些自由群自同构的映射环面的拟等距刚性和群的所有指标n子群的交集的指标的渐近增长。最后,PI希望促进和扩展李群的“不变随机子群”这一激动人心的新课题,他和albert等人利用这一课题来控制高阶局部对称空间的Betti数的增长。在过去的40年里,二维和三维几何形状的研究迅速发展,部分原因是由于威廉·瑟斯顿在20世纪70年代的革命性工作。瑟斯顿是最早意识到“几何退化”在这些低维空间中的特殊效用的人之一。几何退化可以被认为是形状的变形,最终可能改变其类型:例如,半径缩小的球体退化为点,高度固定且周长缩小的垂直圆柱体退化为线段。该项目的目标是使用几何退化来分析各种低维形状,特别是三维流形,我们的宇宙就是一个例子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Biringer其他文献
A finiteness theorem for hyperbolic 3‐manifolds
双曲3流形的有限定理
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Ian Biringer;J. Souto - 通讯作者:
J. Souto
Unimodularity of Invariant Random Subgroups
不变随机子群的幺模性
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Ian Biringer;O. Tamuz - 通讯作者:
O. Tamuz
Metrizing the Chabauty topology
- DOI:
10.1007/s10711-017-0274-5 - 发表时间:
2017-07-17 - 期刊:
- 影响因子:0.500
- 作者:
Ian Biringer - 通讯作者:
Ian Biringer
Intersection growth in groups
群体交叉增长
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Ian Biringer;K. Bou;M. Kassabov;Francesco Matucci - 通讯作者:
Francesco Matucci
G'eom'etrie et topologie des vari'et'es hyperboliques de grand volume
大体积的各种双曲线拓扑和拓扑
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Ian Biringer;J. Raimbault - 通讯作者:
J. Raimbault
Ian Biringer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Biringer', 18)}}的其他基金
CAREER: Rank, genus and Betti numbers of large-volume manifolds
职业:大体积流形的秩、亏格和贝蒂数
- 批准号:
1654114 - 财政年份:2017
- 资助金额:
$ 15.85万 - 项目类别:
Continuing Grant
Geometry of manifolds with large volume
大体积流形的几何形状
- 批准号:
1611851 - 财政年份:2016
- 资助金额:
$ 15.85万 - 项目类别:
Continuing Grant
Asymptotic methods in groups and locally symmetric spaces
群和局部对称空间中的渐近方法
- 批准号:
1207828 - 财政年份:2012
- 资助金额:
$ 15.85万 - 项目类别:
Standard Grant
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Applying an equity and diversity lens to understand the care experiences and healthcare outcomes of low income and linguistic minority groups in Ontario retirement homes: A mixed methods study
应用公平和多样性的视角来了解安大略省养老院中低收入和语言少数群体的护理体验和医疗保健结果:一项混合方法研究
- 批准号:
484613 - 财政年份:2023
- 资助金额:
$ 15.85万 - 项目类别:
Fellowship Programs
JAX Diversity Action Plan (DAP) Post-Baccalaureate Program in Genomics (gDAP)
JAX 多样性行动计划 (DAP) 基因组学学士后计划 (gDAP)
- 批准号:
10555588 - 财政年份:2023
- 资助金额:
$ 15.85万 - 项目类别:
Addressing Surgical Disparities at the Root; Working to improve diversity in the surgical workforce
从根本上解决手术差异;
- 批准号:
10639471 - 财政年份:2023
- 资助金额:
$ 15.85万 - 项目类别:
The Causal Impact of Poverty Reduction on Housing Conditions of Low-Income, U.S. Children and the Role of Housing and Neighborhood Ecosystems on Young Children's Healthy Development
减贫对美国低收入儿童住房条件的因果影响以及住房和邻里生态系统对幼儿健康发展的作用
- 批准号:
10678527 - 财政年份:2023
- 资助金额:
$ 15.85万 - 项目类别:
Integration of stepped care for Perinatal Mood and Anxiety Disorders among Women Living with HIV in Kenya
肯尼亚艾滋病毒感染妇女围产期情绪和焦虑障碍的分级护理一体化
- 批准号:
10677075 - 财政年份:2023
- 资助金额:
$ 15.85万 - 项目类别:
The RaDIANT Health Systems Intervention for Equity in Kidney Transplantation
Radiant 卫生系统干预肾移植的公平性
- 批准号:
10681998 - 财政年份:2023
- 资助金额:
$ 15.85万 - 项目类别:
Modification and Pilot Testing of The Capacity cOaching And exerCise after Hospitalization for Heart Failure (COACH-HF) Intervention
心力衰竭住院后能力训练和锻炼(COACH-HF)干预措施的修改和试点测试
- 批准号:
10539371 - 财政年份:2023
- 资助金额:
$ 15.85万 - 项目类别:
Mobile Health and Oral Testing to Optimize Tuberculosis Contact Tracing in Colombia
移动健康和口腔测试可优化哥伦比亚的结核病接触者追踪
- 批准号:
10667885 - 财政年份:2023
- 资助金额:
$ 15.85万 - 项目类别:
Feasibility and acceptability of a father-based intervention to support adolescents reproductive health
以父亲为基础的干预措施支持青少年生殖健康的可行性和可接受性
- 批准号:
10666721 - 财政年份:2023
- 资助金额:
$ 15.85万 - 项目类别: