Analytic Torsion, Conical Singularity and Geometric Applications

解析扭转、圆锥奇异性和几何应用

基本信息

  • 批准号:
    1611915
  • 负责人:
  • 金额:
    $ 15.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-15 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

This project concerns problems in Atiyah-Singer index theory and several problems in geometry that are related to Dirac operators and/or singular spaces. Atiyah-Singer index theory is one of the landmark results of mathematics that unifies several important developments and results in mathematics and has found many remarkable applications in mathematics and physics. The problems include the study of geometric invariants for singular spaces, the use of Dirac operators in the study of stability problems for Einstein metrics, and the study of the heat kernel and the Bergman kernel as well as their relation with the "best" metrics. Part of the project involves graduate students.Analytic torsion has found many interesting connections and significant applications, in Seiberg-Witten theory, hyperbolic geometry, and mirror symmetry. The Cheeger-Muller theorem has played an important role in all of these. The PI, along with his collaborator and graduate students, would like to prove the Ray-Singer conjecture/Cheeger-Muller theorem for manifolds with conical singularities which should help us understand more complicated singularities. One of the most important and extensively studied areas of geometry is the study of canonical metrics and it is important to understand the stability issue associated with variational problems. The PI and his student will seek better understanding of the stability of Einstein metrics with positive scalar curvature by exploring the connection with cones and conical singularity. Bergman kernels and conical singularity have been essential ingredients in the recent spectacular solutions of the Yau-Tian-Donaldson conjecture. This proposal aims for the solution of the Ray-Singer conjecture for manifolds with conical singularity, better understanding of the variational structure of the total scalar curvature functional, the Bergman kernel, and the Ricci flow on noncompact manifolds. It also explores the connection with positive mass theorems.
这个项目涉及Atiyah-Singer指数理论中的问题和与Dirac算子和/或奇异空间有关的几个几何问题。Atiyah-Singer指数理论是数学的里程碑式的成果之一,它统一了数学中的几个重要发展和结果,在数学和物理学中有许多引人注目的应用。这些问题包括奇异空间的几何不变量的研究,在爱因斯坦度量的稳定性问题的研究中使用狄拉克算子,以及热核和伯格曼核的研究以及它们与“最佳”度量的关系。解析挠率在塞伯格-威滕理论、双曲几何和镜像对称中发现了许多有趣的联系和重要的应用。Cheeger-Muller定理在所有这些方面都发挥了重要作用。PI,沿着他的合作者和研究生,想证明Ray-Singer猜想/Cheeger-Muller定理的流形与圆锥奇点,这应该有助于我们理解更复杂的奇点。几何学中最重要和最广泛研究的领域之一是正则度量的研究,理解与变分问题相关的稳定性问题是很重要的。PI和他的学生将寻求更好地理解爱因斯坦度量的稳定性与正标量曲率探索与锥和锥奇点。Bergman核和圆锥奇点是最近Yau-Tian-唐纳森猜想的壮观解中的重要组成部分。该方案的目的是解决Ray-Singer猜想的锥奇点流形,更好地理解的变分结构的全标量曲率泛函,Bergman核,和Ricci流的非紧流形。它还探讨了与正质量定理的联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xianzhe Dai其他文献

Eta Invariant and Conformal Cobordism
Witten deformation on non-compact manifolds: heat kernel expansion and local index theorem
  • DOI:
    10.1007/s00209-022-03150-0
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Xianzhe Dai;Junrong Yan
  • 通讯作者:
    Junrong Yan
Perelman’s functionals on manifolds with non-isolated conical singularities
Asymptotic spectral flow
  • DOI:
    10.1007/s00209-023-03229-2
  • 发表时间:
    2023-02-24
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Xianzhe Dai;Yihan Li
  • 通讯作者:
    Yihan Li
Perelman’s $$\lambda $$ -Functional on Manifolds with Conical Singularities
具有锥形奇点的流形上的佩雷尔曼的λ-泛函
  • DOI:
    10.1007/s12220-017-9971-4
  • 发表时间:
    2017-12-13
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Xianzhe Dai;Changliang Wang
  • 通讯作者:
    Changliang Wang

Xianzhe Dai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xianzhe Dai', 18)}}的其他基金

EMSW21-RTG: UCSB RTG in Topology and Geometry
EMSW21-RTG:拓扑和几何中的 UCSB RTG
  • 批准号:
    1045292
  • 财政年份:
    2011
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Continuing Grant
Geometric Applications of Dirac Operator and Atiyah-Singer Index Theory
狄拉克算子和Atiyah-Singer指数理论的几何应用
  • 批准号:
    1007041
  • 财政年份:
    2010
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Standard Grant
Dirac operator, Atiyah-Singer index theory, and applications
狄拉克算子、Atiyah-Singer 指数理论及应用
  • 批准号:
    0707000
  • 财政年份:
    2007
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Standard Grant
International Conference on Geometry and Analysis of Manifolds
国际流形几何与分析会议
  • 批准号:
    0712865
  • 财政年份:
    2007
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Standard Grant
Dirac Operator, Eta Invariant and Applications
狄拉克算子、Eta 不变量及其应用
  • 批准号:
    0405890
  • 财政年份:
    2004
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Standard Grant
Santa Barbara Summer Conference in Geometry, July 21-24, 1999, Santa Barbara, California
圣巴巴拉几何夏季会议,1999 年 7 月 21-24 日,加利福尼亚州圣巴巴拉
  • 批准号:
    9820748
  • 财政年份:
    1999
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Standard Grant
Geometric Invariants and Metric Degenerations
几何不变量和度量退化
  • 批准号:
    9704296
  • 财政年份:
    1997
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Metric Degeneration, Degenerating Elliptic and Parabolic Problems and Geometric Invarients of Elliptic Operators
数学科学:度量退化、退化椭圆和抛物线问题以及椭圆算子的几何不变量
  • 批准号:
    9204267
  • 财政年份:
    1992
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Standard Grant

相似海外基金

Development of a Torsion Pendulum Gravity Gradiometer for Earthquake Early Warning
地震预警扭摆重力梯度仪的研制
  • 批准号:
    22KJ1040
  • 财政年份:
    2023
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Investigation of the cause of defects that occur in the joints of zirconia implants using the torsion test
使用扭转试验调查氧化锆植入物关节中发生缺陷的原因
  • 批准号:
    23K09224
  • 财政年份:
    2023
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Electrodynamic Linear torsion testing machine
电动直线扭转试验机
  • 批准号:
    524805243
  • 财政年份:
    2023
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Major Research Instrumentation
Geometry of statistical manifolds admitting torsion
允许扭转的统计流形的几何
  • 批准号:
    23K03088
  • 财政年份:
    2023
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Formation of RNA and Proteins by High-Pressure Torsion: An Insight into the Origin of Life
高压扭转形成 RNA 和蛋白质:洞察生命起源
  • 批准号:
    22K18737
  • 财政年份:
    2022
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Torsion in innovative timber composite floors
创新木复合地板的扭转
  • 批准号:
    DP220101038
  • 财政年份:
    2022
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Discovery Projects
Geometric analysis of special structures in high dimensions inspired from physics; including singularities, torsion, and geometric evolution
受物理学启发的高维特殊结构的几何分析;
  • 批准号:
    RGPIN-2019-03933
  • 财政年份:
    2022
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Discovery Grants Program - Individual
Development of New Techniques for Rock Deformation Using the Large Volume Torsion Apparatus
大体积扭转装置岩石变形新技术开发
  • 批准号:
    2149427
  • 财政年份:
    2022
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Continuing Grant
Ricci Curvature and Torsion
里奇曲率和挠率
  • 批准号:
    2203536
  • 财政年份:
    2022
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Standard Grant
RUI: Search for Non-Newtonian Gravity Using A High-Sensitivity Torsion Balance, A Continuation
RUI:使用高灵敏度扭力天平搜索非牛顿重力,延续
  • 批准号:
    2110228
  • 财政年份:
    2021
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了