Topology of 4-manifolds, links and Engel groups
4-流形、连杆和恩格尔群的拓扑
基本信息
- 批准号:1612159
- 负责人:
- 金额:$ 23.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Topology of manifolds is a subject aimed at classification of shapes (manifolds) which are locally modeled on the Euclidean space of a given dimension. The topology of 4-dimensional manifolds is of particular interest since this dimension is relevant in physics while studying space-time, and it is the subject of some of the outstanding open problems in Topology. This dimension is also special in the sense that it is borderline between "low dimensions" where many classification results have been settled and "higher dimensions" where geometric classification problems are known to admit an algebraic reformulation. This project is aimed at classification up to continuous deformations of 4-manifolds with special characteristics, known as large fundamental groups. The main part of this project concerns geometric classification of topological 4-manifolds, specifically the topological surgery conjecture and the s-cobordism conjecture for "large" fundamental groups. The notion of a 1/2-null surgery problem is proposed, as an intermediate step in the context of universal surgery problems. A key ingredient is the group-theoretic Engel relation, which is closely related to higher-order singularities of surfaces in 4-manifolds. The framework of the AB-slice problem is also considered. Another part of the project concerns ongoing work on applications of (2+1)-dimensional topological quantum field theories to combinatorics and to representations of mapping class groups. The PI also plans to consider questions in geometric and topological complexity of embeddings in dimension 4.
流形的拓扑是一个旨在分类形状(流形)的主题,这些形状在给定维度的欧几里得空间上局部建模。四维流形的拓扑是特别感兴趣的,因为这个维度在物理学中是相关的,而研究时空,它是拓扑学中一些突出的开放问题的主题。这方面也是特殊的意义上说,它是边界之间的“低维”,许多分类结果已经解决和“高维”的几何分类问题是已知的承认代数重新。这个项目的目的是分类到具有特殊特征的4-流形的连续变形,称为大基本群。这个项目的主要部分是关于拓扑4-流形的几何分类,特别是拓扑手术猜想和“大”基本群的s-配边猜想。提出了1/2-null手术问题的概念,作为通用手术问题背景下的中间步骤。一个关键的组成部分是群论恩格尔关系,这是密切相关的高阶奇异曲面在4-流形。AB切片问题的框架也被认为是。该项目的另一部分涉及正在进行的工作应用(2+1)维拓扑量子场论的组合和表示的映射类组。PI还计划考虑4维嵌入的几何和拓扑复杂性问题。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Topological quantum field theory and polynomial identities for graphs on the torus
拓扑量子场论和圆环图的多项式恒等式
- DOI:10.4171/aihpd/130
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Fendley, Paul;Krushkal, Vyacheslav
- 通讯作者:Krushkal, Vyacheslav
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vyacheslav Krushkal其他文献
Surgery and involutions on 4-manifolds
4 歧管的手术和复合
- DOI:
10.2140/agt.2005.5.1719 - 发表时间:
2005 - 期刊:
- 影响因子:0.7
- 作者:
Vyacheslav Krushkal - 通讯作者:
Vyacheslav Krushkal
2 9 Se p 20 04 ON THE ASYMPTOTICS OF QUANTUM SU ( 2 ) REPRESENTATIONS OF MAPPING CLASS GROUPS
2 9 Sep 20 04 关于量子 SU 的渐近性 (2) 映射类群的表示
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
M. Freedman;Vyacheslav Krushkal - 通讯作者:
Vyacheslav Krushkal
Alexander Duality, Gropes and Link Homotopy
亚历山大对偶、格罗普斯和链接同伦
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Vyacheslav Krushkal;P. Teichner - 通讯作者:
P. Teichner
Handle Slides and Localizations of Categories
处理幻灯片和类别本地化
- DOI:
10.1093/imrn/rns108 - 发表时间:
2011 - 期刊:
- 影响因子:1
- 作者:
Benjamin C. Cooper;Vyacheslav Krushkal - 通讯作者:
Vyacheslav Krushkal
Towards an <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow><mml:mi mathvariant="fraktur">sl</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math> action on the annular Khovanov spectrum
迈向 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow><mml:mi mathvariant
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:1.7
- 作者:
Rostislav Akhmechet;Vyacheslav Krushkal;Michael Willis - 通讯作者:
Michael Willis
Vyacheslav Krushkal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vyacheslav Krushkal', 18)}}的其他基金
Topology of 4-Manifolds, Embeddings, and Stable Homotopy Invariants of Links
4-流形拓扑、嵌入和链接的稳定同伦不变量
- 批准号:
2105467 - 财政年份:2021
- 资助金额:
$ 23.08万 - 项目类别:
Continuing Grant
Geometric and quantum topology in low dimensions
低维几何和量子拓扑
- 批准号:
1309178 - 财政年份:2013
- 资助金额:
$ 23.08万 - 项目类别:
Standard Grant
Low-dimensional topology and topological methods in condensed matter physics
凝聚态物理中的低维拓扑和拓扑方法
- 批准号:
1007342 - 财政年份:2010
- 资助金额:
$ 23.08万 - 项目类别:
Standard Grant
New topological structures in condensed matter physics
凝聚态物理中的新拓扑结构
- 批准号:
0729032 - 财政年份:2007
- 资助金额:
$ 23.08万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: RUI: Connecting Spatial Graphs to Links and 3-Manifolds
协作研究:RUI:将空间图连接到链接和 3 流形
- 批准号:
2104022 - 财政年份:2021
- 资助金额:
$ 23.08万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Connecting Spatial Graphs to Links and 3-Manifolds
协作研究:RUI:将空间图连接到链接和 3 流形
- 批准号:
2104026 - 财政年份:2021
- 资助金额:
$ 23.08万 - 项目类别:
Standard Grant
Topology of 4-Manifolds, Embeddings, and Stable Homotopy Invariants of Links
4-流形拓扑、嵌入和链接的稳定同伦不变量
- 批准号:
2105467 - 财政年份:2021
- 资助金额:
$ 23.08万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Connecting Spatial Graphs to Links and 3-Manifolds
协作研究:RUI:将空间图连接到链接和 3 流形
- 批准号:
2213462 - 财政年份:2021
- 资助金额:
$ 23.08万 - 项目类别:
Standard Grant
Research on 3-manifolds and links based on the Heegaard theory
基于Heegaard理论的3流形与连杆研究
- 批准号:
21K20328 - 财政年份:2021
- 资助金额:
$ 23.08万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
単体分割を用いた結び目と枠付き3次元多様体の量子不変量の研究
使用单纯分解研究结和框架三维流形的量子不变量
- 批准号:
19K14523 - 财政年份:2019
- 资助金额:
$ 23.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometric structures and invariants of links and 3-manifolds
链接和 3 流形的几何结构和不变量
- 批准号:
1404754 - 财政年份:2014
- 资助金额:
$ 23.08万 - 项目类别:
Standard Grant
Research on distances of Heegaard splittings of 3-manifolds and bridge splittings of links
三流道Heegaard分裂距离及连杆桥分裂的研究
- 批准号:
25887039 - 财政年份:2013
- 资助金额:
$ 23.08万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Categorification and Double Categorification of Quantum Topological Invariants of Links and 3-Manifolds
连杆和3-流形的量子拓扑不变量的分类和双分类
- 批准号:
1108727 - 财政年份:2011
- 资助金额:
$ 23.08万 - 项目类别:
Standard Grant
Study of intersections and links on non-simply-connected equivariant manifolds and K-theory
非单连通等变流形的交和连线与K理论的研究
- 批准号:
22540085 - 财政年份:2010
- 资助金额:
$ 23.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)