Categorification and Double Categorification of Quantum Topological Invariants of Links and 3-Manifolds
连杆和3-流形的量子拓扑不变量的分类和双分类
基本信息
- 批准号:1108727
- 负责人:
- 金额:$ 15.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An interpretation of quantum invariants of links in 3-manifolds within the framework of classical topology presented a challenge for a long time. The most convincing explanation of their nature came from Witten's work which related these invariants to quantum Chern-Simons theory. However the reason why Jones and HOMFLY-PT polynomials were polynomials in q rather than formal power series in (q-1), as a Quantum Field Theory would suggest, and what is the meaning of the coefficients of these polynomials remained a mystery. A breakthrough came from Khovanov's categorification construction: it turned out that a quantum polynomial is an Euler characteristic of a Z-graded homology associated by a combinatorial construction to a link. An extension of this result to the Witten-Reshetikhin-Turaev (WRT) invariant of links in 3-manifolds is a challenging problem, in part because the WRT invariant is not exactly a polynomial of q and is defined only for q being a root of 1. Recently Khovanov and Rozansky categorified the "stable" polynomial part of the WRT invariant of links in the product of a 2-sphere with a circle. Their construction uses the derived categories of modules over Khovanov's algebras H_n. Rozansky will try to extend this result further to general 3-manifolds. He conjectures that this might be done by deforming the algebras H_n into A-infinity algebras, thus reducing their Z-grading to a periodic Z_r grading which would correspond to the associated parameter q being the root of 1. A similar trick worked to construct a categorification of the SU(N) HOMFLY-PT polynomial from its 2-variable version. In addition to categorifying combinatorially the WRT invariant, Rozansky will try to categorify Khovanov's categorificaiton construction of the Jones polynomial. This idea is based on a similarity between the objects used in the Kamnitzer-Cautis version of Khovanov's categorification and the 2-category associated to a holomorphic symplectic manifold in the joint work of Kapustin, Rozansky and Saulina.The discovery of quantum invariants such as the Jones and HOMFLY-PT polynomials of links in a 3-sphere and the Witten-Reshetikhin-Turaev invariant of colored links in a 3-manifold opened a new chapter in 3-dimensional topology. In contrast to the Alexander polynomial which was very efficient in establishing the topological properties of links, the relation between these new invariants and classical topology is indirect. It seems that the purpose of quantum invariants is to establish deep links between 3-dimensional topology and other branches of Mathematics and Quantum Field Theory (QFT). Khovanov's categorification of the Jones polynomial was an important step in this direction: it showed that algebraic geometry could be "married" to 3-dimensional topology. Witten suggests that a superstring-inspired 6-dimensional QFT links together Khovanov homology and Langlands duality. By using the methods of homological algebra, Rozansky will try to extend Khovanov's categorification program from links in a 3-sphere to links in general 3-manifolds. He will also try to raise categorification by one level through associating a category rather than a homology to a link. If true, this might suggest that the underlying QFT is 7-dimensional rather than 6-dimensional.
在经典拓扑框架内解释三流形中的量子不变量长期以来一直是一个挑战。对它们本质最令人信服的解释来自威滕的工作,该工作将这些不变量与量子陈-西蒙斯理论联系起来。然而,正如量子场论所暗示的那样,琼斯和 HOMFLY-PT 多项式为何是 q 中的多项式而不是 (q-1) 中的形式幂级数,以及这些多项式的系数的含义仍然是个谜。霍瓦诺夫的分类构造取得了突破:事实证明,量子多项式是通过与链接的组合构造相关联的 Z 分级同调性的欧拉特征。将该结果扩展到 3 流形中的 Witten-Reshetikhin-Turaev (WRT) 链接不变量是一个具有挑战性的问题,部分原因是 WRT 不变量并不完全是 q 的多项式,并且仅在 q 为 1 的根时定义。最近 Khovanov 和 Rozansky 将 WRT 链接不变量的“稳定”多项式部分分类为 a 的乘积 2-带圆的球体。它们的构造使用了 Khovanov 代数 H_n 上模的派生类别。 Rozansky 将尝试将此结果进一步推广到一般的 3 流形。他推测这可能是通过将代数 H_n 变形为 A-无穷代数来完成的,从而将它们的 Z 分级减少为周期性 Z_r 分级,这将对应于相关参数 q 作为 1 的根。类似的技巧可以从其 2 变量版本构造 SU(N) HOMFLY-PT 多项式的分类。除了对 WRT 不变量进行组合分类之外,Rozansky 还将尝试对 Jones 多项式的 Khovanov 分类构造进行分类。这个想法是基于 Kamnitzer-Cautis 版本的 Khovanov 分类中使用的对象与 Kapustin、Rozansky 和 Saulina 的联合工作中与全纯辛流形相关的 2-范畴之间的相似性。量子不变量的发现,例如 3-球体中的 Jones 和 HOMFLY-PT 多项式以及 3 流形中彩色链接的 Witten-Reshetikhin-Turaev 不变量开启了 3 维拓扑的新篇章。与在建立链接的拓扑性质方面非常有效的亚历山大多项式相反,这些新的不变量和经典拓扑之间的关系是间接的。量子不变量的目的似乎是在 3 维拓扑与数学和量子场论 (QFT) 的其他分支之间建立深层联系。霍瓦诺夫对琼斯多项式的分类是朝这个方向迈出的重要一步:它表明代数几何可以与三维拓扑“联姻”。威滕认为,受超弦启发的 6 维 QFT 将霍瓦诺夫同调性和朗兰兹对偶性联系在一起。通过使用同调代数的方法,Rozansky 将尝试将 Khovanov 的分类程序从 3 球体中的链接扩展到一般 3 流形中的链接。他还将尝试通过将类别而不是同源性与链接相关联来将分类提高一个级别。如果属实,这可能表明底层 QFT 是 7 维而不是 6 维。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lev Rozansky其他文献
Lev Rozansky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lev Rozansky', 18)}}的其他基金
FRG: Collaborative Research: Algebra and Geometry Behind Link Homology
FRG:协作研究:链接同调背后的代数和几何
- 批准号:
1760578 - 财政年份:2018
- 资助金额:
$ 15.66万 - 项目类别:
Standard Grant
Categorification and Topological Quantum Field Theories
分类和拓扑量子场论
- 批准号:
0808974 - 财政年份:2008
- 资助金额:
$ 15.66万 - 项目类别:
Standard Grant
A Quantum Field Theory Approach to the Study of Low-dimensional Topology Invaraints and their Categorification
研究低维拓扑不变量及其分类的量子场论方法
- 批准号:
0509793 - 财政年份:2005
- 资助金额:
$ 15.66万 - 项目类别:
Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
- 批准号:
0196235 - 财政年份:2000
- 资助金额:
$ 15.66万 - 项目类别:
Standard Grant
Classical Topology Inside Quantum Invariants
量子不变量中的经典拓扑
- 批准号:
0196131 - 财政年份:2000
- 资助金额:
$ 15.66万 - 项目类别:
Continuing Grant
Classical Topology Inside Quantum Invariants
量子不变量中的经典拓扑
- 批准号:
0072857 - 财政年份:2000
- 资助金额:
$ 15.66万 - 项目类别:
Continuing Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
- 批准号:
9996368 - 财政年份:1998
- 资助金额:
$ 15.66万 - 项目类别:
Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
- 批准号:
9704893 - 财政年份:1997
- 资助金额:
$ 15.66万 - 项目类别:
Standard Grant
相似国自然基金
对角型Nichols代数及其Drinfeld double的结构和表示
- 批准号:11701019
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
一个double B-box锌指蛋白基因OsBBX22b调控水稻光周期开花的机理研究
- 批准号:31201187
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
HPS (ep,pe和double)雄鼠生殖力低下的研究
- 批准号:31171446
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
地球弓激波的三维时空结构:CLUSTER Ⅱ,DOUBLE STAR和GEOTAIL卫星观测和数据分析研究
- 批准号:40574073
- 批准年份:2005
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
QUIQ: Quantum information processed at attosecond timescale in double quantum-dot qubits
QUIQ:在双量子点量子位中以阿秒时间尺度处理的量子信息
- 批准号:
EP/Z000807/1 - 财政年份:2025
- 资助金额:
$ 15.66万 - 项目类别:
Fellowship
Study of the quantum effects of para-hydrogen with high-sensitive coherent double resonance spectroscopy and its application to interstellar chemistry
高灵敏相干双共振光谱研究仲氢量子效应及其在星际化学中的应用
- 批准号:
22K05017 - 财政年份:2022
- 资助金额:
$ 15.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hidden orders in double-perovskite quantum materials
双钙钛矿量子材料中的隐藏订单
- 批准号:
576422-2022 - 财政年份:2022
- 资助金额:
$ 15.66万 - 项目类别:
Alliance Grants
Development of resonant-tunneling Mott transistor based on double quantum well structures of strongly correlated oxides.
开发基于强相关氧化物双量子阱结构的谐振隧道莫特晶体管。
- 批准号:
22H01948 - 财政年份:2022
- 资助金额:
$ 15.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affine and double affine quantum algebras
仿射和双仿射量子代数
- 批准号:
RGPIN-2019-04799 - 财政年份:2022
- 资助金额:
$ 15.66万 - 项目类别:
Discovery Grants Program - Individual
Affine and double affine quantum algebras
仿射和双仿射量子代数
- 批准号:
RGPIN-2019-04799 - 财政年份:2021
- 资助金额:
$ 15.66万 - 项目类别:
Discovery Grants Program - Individual
Affine and double affine quantum algebras
仿射和双仿射量子代数
- 批准号:
RGPIN-2019-04799 - 财政年份:2020
- 资助金额:
$ 15.66万 - 项目类别:
Discovery Grants Program - Individual
AQuA DIP: Advanced Quantum Approaches to Double Ionisation Processes
AQuA DIP:双电离过程的先进量子方法
- 批准号:
EP/T019530/1 - 财政年份:2020
- 资助金额:
$ 15.66万 - 项目类别:
Research Grant
Affine and double affine quantum algebras
仿射和双仿射量子代数
- 批准号:
RGPIN-2019-04799 - 财政年份:2019
- 资助金额:
$ 15.66万 - 项目类别:
Discovery Grants Program - Individual
Double Magnetic Resonance Measurements of Lightly-Doped Semiconductor at Ultra-Low Temperatures and under High Magnetic Fields with the Aim of Application to Quantum Computing(Fostering Joint International Research)
超低温高磁场下轻掺杂半导体的双磁共振测量,旨在应用于量子计算(促进国际联合研究)
- 批准号:
16KK0098 - 财政年份:2017
- 资助金额:
$ 15.66万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research)














{{item.name}}会员




