Understanding Multi-stage Neural Stem Cell Function via 4D Bioprinting Reprogrammable System
通过 4D 生物打印可重编程系统了解多阶段神经干细胞功能
基本信息
- 批准号:2110842
- 负责人:
- 金额:$ 49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Neural injuries represent one of the most common and devastating clinical challenges worldwide. Currently, stem cell-based technologies have shown great promise in treating nerve damage. However, one of the major challenges in successfully utilizing stem cells for clinical applications is the difficulty in providing proper environmental cues to regulate their behaviors. Most of the currently available techniques to guide stem cell behavior utilize simple 2D or 3D microenvironments, which are largely static in nature, and therefore fail to reflect the dynamic nature of the native neural tissue environment in which stem cells develop. Thus, the objective of this study is to develop a novel 4D (time being the 4th dimension) printed smart system, which can change its shape over time in order to improve neural stem cell (NSC) function and neural regeneration. This study will elucidate the fundamental mechanisms of NSC development and differentiation in a dynamic environment. Furthermore, the 4D bioprinting system will be promising for many potential applications ranging from tissue/organ regeneration to in vitro drug screening and disease modeling. Integrated research, educational, and outreach activities will place special emphasis on underrepresented minorities and female students at different levels, and will provide a diverse audience with a high-caliber science and engineering education. The goal of this project is to 4D print a novel reprogrammable smart system with a time-dependent dynamic transformation, which can provide an efficient means to cater to the different neurodevelopmental stages undergone by NSCs and will improve neural tissue regeneration. The 4D bioprinting system can provide a perfect self-morphing feature when exposed to a predetermined stimulus for controlling NSC fate. For this purpose, two specific study aims will be performed: Aim 1 will primarily focus on synthesizing reprogrammable 4D ink materials, which can execute a two-week shape change at physiological temperature. The 4D inks will be formulated by varying the ratios of different ink components in order to achieve desirable, printable rheological properties. Aim 2 will involve the bioprinting of smart neural constructs and will explore NSC functions and biomechanics during the 4D transformation process. The microstructure and mechanical properties of the bioprinted constructs will be characterized. Furthermore, NSC differentiation, axonal extension, and gene expression within the context of the 4D dynamic environment will be thoroughly evaluated in vitro. The successful completion of the project will provide a revolutionary smart system for enhancing the performance of NSCs for neural regeneration purposes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
神经损伤是全世界最常见和最具破坏性的临床挑战之一。目前,基于干细胞的技术在治疗神经损伤方面显示出巨大的前景。然而,成功地将干细胞用于临床应用的主要挑战之一是难以提供适当的环境线索来调节它们的行为。目前大多数可用于指导干细胞行为的技术利用简单的2D或3D微环境,这些微环境在本质上基本上是静态的,因此无法反映干细胞在其中发育的自然神经组织环境的动态性质。因此,本研究的目的是开发一种新型的4D(时间是第4维)打印智能系统,该系统可以随着时间的推移改变其形状,以改善神经干细胞(NSC)的功能和神经再生。本研究将阐明神经干细胞在动态环境中发育和分化的基本机制。此外,4D生物打印系统将在组织/器官再生、体外药物筛选和疾病建模等许多潜在应用中具有广阔的应用前景。综合研究、教育和外联活动将特别重视不同层次的代表性不足的少数民族和女学生,并将为不同的受众提供高素质的科学和工程教育。本项目的目标是打印一种新型的可重编程的智能系统,该系统具有随时间变化的动态转换,可以提供一种有效的手段来迎合神经干细胞经历的不同神经发育阶段,并将促进神经组织的再生。4D生物打印系统可以提供完美的自我变形功能,当暴露在预定的刺激下时,可以控制NSC的命运。为此,将进行两个具体的研究目标:目标1将主要专注于合成可重新编程的4D墨水材料,这种材料可以在生理温度下执行两周的形状变化。4D油墨将通过改变不同油墨成分的比例来配制,以获得所需的、可打印的流变性。目标2将涉及智能神经结构的生物打印,并将探索神经干细胞在4D转化过程中的功能和生物力学。将对生物打印构建物的微观结构和机械性能进行表征。此外,在4D动态环境的背景下,神经干细胞的分化、轴突延伸和基因表达将在体外进行彻底的评估。该项目的成功完成将提供一个革命性的智能系统,用于提高神经再生用途的NSC的性能。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lijie Grace Zhang其他文献
Testing of a 3D printed, nanostructured osteochondral implant for knee repair in a small animal model
在小动物模型中测试用于膝关节修复的 3D 打印纳米结构骨软骨植入物
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
N. Arumugasaamy;J. Fisher;N. Gandhi;B. Holmes;Kuo C;M. Oetgen;Cristina Rossi;Lijie Grace Zhang - 通讯作者:
Lijie Grace Zhang
Design a Biologically Inspired Nanostructured Coating for Better Osseointegration
设计受生物启发的纳米结构涂层以实现更好的骨整合
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Mian Wang;Jian Li;M. Keidar;Lijie Grace Zhang - 通讯作者:
Lijie Grace Zhang
Development of a Biomimetic Electrospun Microfibrous Scaffold With Multiwall Carbon Nanotubes for Cartilage Regeneration
开发用于软骨再生的仿生静电纺丝微纤维支架与多壁碳纳米管
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
B. Holmes;Nathan J. Castro;Jian Li;Lijie Grace Zhang - 通讯作者:
Lijie Grace Zhang
Enhanced Human Bone Marrow Mesenchymal Stem Cell Chondrogenic Differentiation on Cold Atmospheric Plasma Modified Cartilage Scaffold
冷大气等离子体修饰软骨支架增强人骨髓间充质干细胞软骨形成分化
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Wei Zhu;M. Keidar;Lijie Grace Zhang - 通讯作者:
Lijie Grace Zhang
Experimental and theoretical studies of tumor growth
肿瘤生长的实验和理论研究
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Hao Sun;Timothy Eswothy;Kerlin P. Robert;Jiaoyan Li;Lijie Grace Zhang;James D. Lee - 通讯作者:
James D. Lee
Lijie Grace Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lijie Grace Zhang', 18)}}的其他基金
I-Corps: 3D Bioprinted Cardiac Tissue Patch for Heart Repair
I-Corps:用于心脏修复的 3D 生物打印心脏组织补片
- 批准号:
2333048 - 财政年份:2023
- 资助金额:
$ 49万 - 项目类别:
Standard Grant
Collaborative Research: 4D Bioprinting of Near-infrared Light Responsive Smart Constructs for Pluripotent Stem Cell Derived Cardiomyocyte Engineering
合作研究:用于多能干细胞衍生心肌细胞工程的近红外光响应智能结构的 4D 生物打印
- 批准号:
1856321 - 财政年份:2019
- 资助金额:
$ 49万 - 项目类别:
Standard Grant
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 49万 - 项目类别:
Standard Grant
EAGER: 4D Bioprinting of Smart Complex Tissue Constructs
EAGER:智能复杂组织结构的 4D 生物打印
- 批准号:
1642186 - 财政年份:2016
- 资助金额:
$ 49万 - 项目类别:
Standard Grant
UNS: Integrating 3D Bioprinting and Biologically Inspired Nanomaterials for Cartilage Regeneration
UNS:整合 3D 生物打印和生物启发纳米材料用于软骨再生
- 批准号:
1510561 - 财政年份:2015
- 资助金额:
$ 49万 - 项目类别:
Standard Grant
A Novel 3D Bioprinted Smart Vascularized Nano Tissue
新型 3D 生物打印智能血管化纳米组织
- 批准号:
8755143 - 财政年份:2014
- 资助金额:
$ 49万 - 项目类别:
相似国自然基金
基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
- 批准号:
- 批准年份:2022
- 资助金额:80 万元
- 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
- 批准号:52111530069
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘-印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2021
- 资助金额:15 万元
- 项目类别:
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
- 批准号:62002350
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
- 批准号:82001782
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
- 批准号:62004023
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2020
- 资助金额:万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
An Integrated Life-course Approach for Person-centred Solutions and Care for Ageing with Multi-morbidity in the European Regions - STAGE; Stay Healthy Through Ageing
欧洲地区以人为本的解决方案和针对多种疾病的老龄化护理的综合生命全程方法 - STAGE;
- 批准号:
10112787 - 财政年份:2024
- 资助金额:
$ 49万 - 项目类别:
EU-Funded
A Stage 1 Pilot Test for Feasibility and Efficacy of a Multi-Level Intervention To Increase Physical Activity in Adults with Intellectual Disability: Step it Up +
第一阶段试点测试多层次干预措施的可行性和有效性,以增加智力障碍成人的体力活动:加快步伐
- 批准号:
10585633 - 财政年份:2023
- 资助金额:
$ 49万 - 项目类别:
THz-driven multi-stage relativistic beamline design and beam dynamics
太赫兹驱动的多级相对论光束线设计和光束动力学
- 批准号:
2905219 - 财政年份:2023
- 资助金额:
$ 49万 - 项目类别:
Studentship
Assessing Multi-level Barriers to Racial Equity in Living Liver Donor Transplantation
评估活体肝脏捐赠者移植中种族平等的多层次障碍
- 批准号:
10730834 - 财政年份:2023
- 资助金额:
$ 49万 - 项目类别:
Non-Synchronous Vibration for High-Speed Multi-Stage Compressors
高速多级压缩机的非同步振动
- 批准号:
2859935 - 财政年份:2023
- 资助金额:
$ 49万 - 项目类别:
Studentship
Non-Contact Sleep Stage Estimation: Machine Learning in Multi-Imbalance Data for Improvements in Accuracy and Interpretability
非接触式睡眠阶段估计:多重不平衡数据中的机器学习,以提高准确性和可解释性
- 批准号:
22KJ1367 - 财政年份:2023
- 资助金额:
$ 49万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Generating a Skeleton Structure of a Humanoid Robot that Reproduces Human Movements Using Multi-stage CNN
使用多级 CNN 生成重现人类动作的人形机器人的骨骼结构
- 批准号:
23K16972 - 财政年份:2023
- 资助金额:
$ 49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Oral Dysplasias to Carcinomas: Multi-omics Study of Progression
口腔发育不良到癌症:进展的多组学研究
- 批准号:
10770832 - 财政年份:2023
- 资助金额:
$ 49万 - 项目类别:
Development of hybrid multi-stage constructed wetlands based on indigenous adsorptive materials for sustainable heavy metal treatment from mine drainages in Japan
日本开发基于本土吸附材料的混合多阶段人工湿地,用于可持续处理矿山排水中的重金属
- 批准号:
23K20027 - 财政年份:2023
- 资助金额:
$ 49万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Multi-Omics at the Intersections of Environment, Diabetes, and Kidney Disease: A Multi-Omics for Health and Disease Study Site
环境、糖尿病和肾脏疾病交叉点的多组学:健康和疾病研究网站的多组学
- 批准号:
10744464 - 财政年份:2023
- 资助金额:
$ 49万 - 项目类别: