Collaborative Research: 4D Bioprinting of Near-infrared Light Responsive Smart Constructs for Pluripotent Stem Cell Derived Cardiomyocyte Engineering
合作研究:用于多能干细胞衍生心肌细胞工程的近红外光响应智能结构的 4D 生物打印
基本信息
- 批准号:1856321
- 负责人:
- 金额:$ 27.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
4D bioprinting is an emerging manufacturing process to create smart tissue constructs where cellular behaviors can be regulated in both space and time. The objective of this study is to 4D bioprint dynamic light-responsive smart constructs to control the functions of cardiomyocytes (heart muscle cells) derived from human induced pluripotent stem cells. For this purpose, novel light-sensitive ink materials will be synthesized and characterized, and a series of smart structures will be printed to study the effect of the bioprinting process on the structure's dynamic shape changes. Finally, the effects of light-triggered 4D structures on regulating cardiomyocyte growth, differentiation, and beating will be explored. The manipulation of cardiac cell behaviors through 4D bioprinting processes will expand our understanding of cardiac cell function for potential cardiac engineering applications. In addition, this collaborative research will lay the foundation for next-generational 4D bioprinting platforms. Educational and outreach activities will involve a collaboration between the George Washington University and University of Maryland, College Park for sharing research experiences, improvement of existing courses, and inclusion of undergraduate and K-12 students, with broad representations of underrepresented minorities in research, to help educate the future bioengineering workforce.The objective of this study is to 4D bioprint reprogrammable near-infrared light (NIR) responsive smart constructs and to discover 4D dynamic effects on controlling human induced pluripotent stem cell derived cardiomyocyte (iPSC-CM) function and beating behaviors, hypothesizing that these structures will be successfully created and the 4D dynamic effect will greatly improve iPSC-CM functionality and beating behaviors. The first key innovation focuses on creating a new generation of light-sensitive smart inks with precisely controlled multi-responsive 4D effects and bio-functionality. A human benign NIR sensitive moiety will be used in the synthesized 4D ink as a model smart switch. The long-wavelength NIR can efficiently penetrate through the printed biomaterials compared to ultraviolet/visible light and will not harm the surrounding cells. The iPSC-CM is selected because it is a mechanically responsive cell line that is perfect for studying 4D dynamic effects for basic and translational cardiovascular research. This cell line also offers the key advantages of being in virtually unlimited cardiomyocyte supply, as well as having a high regenerative capacity. The project's objectives will be accomplished under three aims. The FIRST Aim is to formulate and characterize a novel smart ink with three key components: a natural triglyceride-based monomer that will serve as the printable matrix of the ink, a liquid crystal polymer that is a critical functional component to exert the reprogrammable property and a NIR moiety with a light polymerizable double bond group. The reaction and the molecular structures will be characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). The 4D inks will be formulated by varying the ratios of the above components in order to achieve a desired, printable rheological property. The SECOND Aim is to bioprint smart structures and explore the effect of the bioprinting process on 4D dynamic shape changes. A custom designed stereolithography (SL) bioprinter, which is capable of controlling key bioprinting parameters (printing speed, printing layer height and laser intensity), will be used to print the synthesized ink materials. The relationship between the printing parameters and the 4D shape change of the light-sensitive smart structure will be established. The THIRD aim is to investigate the dynamic shape change of NIR responsive structures on regulating iPSC-CM functions. The interaction of iPSC-CMs with the NIR responsive structures will be thoroughly studied; the growth of iPSC-CMs on the bioprinted constructs will be determined; the effect of the 4D variations of the bioprinted constructs on calcium transience, myogenesis, and gene expression of iPSC-CMs will be qualitatively and quantitatively examined by Fluo-4 AM, immunocytochemistry, and gene analysis. This study will for the first time explore the fundamental interactions between NIR regulated 4D structures and cardiomyocyte behaviors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
4D生物打印是一种新兴的制造工艺,用于创建智能组织结构,其中细胞行为可以在空间和时间上进行调节。本研究的目的是通过4D生物打印动态光响应智能结构来控制来自人类诱导多能干细胞的心肌细胞(心肌细胞)的功能。为此,将合成和表征新型光敏油墨材料,并打印一系列智能结构,研究生物打印过程对结构动态形状变化的影响。最后,将探讨光触发的4D结构在调节心肌细胞生长、分化和跳动方面的作用。通过4D生物打印过程对心脏细胞行为的操纵将扩大我们对心脏细胞功能的理解,用于潜在的心脏工程应用。此外,这项合作研究将为下一代4D生物打印平台奠定基础。教育和推广活动将包括乔治华盛顿大学和马里兰大学学院公园分校之间的合作,分享研究经验,改进现有课程,包括本科生和K-12学生,广泛代表研究中未被充分代表的少数民族,以帮助培养未来的生物工程劳动力。本研究的目的是4D生物打印可编程近红外光(NIR)响应智能结构,并发现4D动态控制人类诱导多能干细胞衍生心肌细胞(iPSC-CM)功能和跳动行为的效果,假设这些结构将成功创建,4D动态效果将大大改善iPSC-CM功能和跳动行为。第一个关键创新集中在创造新一代光敏智能墨水,具有精确控制的多响应4D效果和生物功能。合成的4D墨水将使用人体良性近红外敏感片段作为智能开关模型。与紫外线/可见光相比,长波近红外可以有效地穿透打印的生物材料,并且不会伤害周围的细胞。选择iPSC-CM是因为它是一种机械反应细胞系,非常适合研究基础和转化心血管研究的4D动态效应。该细胞系还提供了几乎无限心肌细胞供应的关键优势,以及具有高再生能力。该项目的目标将在三个目标下实现。第一个目标是制定和表征一种新型智能墨水,它包含三个关键成分:一种天然甘油三酯基单体,作为墨水的可打印基质;一种液晶聚合物,作为发挥可重新编程特性的关键功能成分;一种具有轻聚合双键基团的近红外部分。利用傅里叶红外光谱(FTIR)、核磁共振(NMR)和差示扫描量热法(DSC)对反应和分子结构进行表征。4D油墨将通过改变上述成分的比例来配制,以达到理想的、可打印的流变性能。第二个目标是生物打印智能结构,并探索生物打印过程对4D动态形状变化的影响。一个定制的立体光刻(SL)生物打印机,能够控制关键的生物打印参数(打印速度,打印层高度和激光强度),将用于打印合成的油墨材料。建立打印参数与光敏智能结构四维形状变化之间的关系。第三个目的是研究近红外响应结构的动态形状变化对iPSC-CM功能的调节。将深入研究iPSC-CMs与近红外响应结构的相互作用;测定iPSC-CMs在生物打印构建体上的生长情况;生物打印构建体的4D变化对iPSC-CMs钙瞬变、肌发生和基因表达的影响将通过Fluo-4 AM、免疫细胞化学和基因分析进行定性和定量检测。本研究将首次探索近红外调控的4D结构与心肌细胞行为之间的基本相互作用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
4D printing soft robotics for biomedical applications
- DOI:10.1016/j.addma.2020.101567
- 发表时间:2020-12-01
- 期刊:
- 影响因子:11
- 作者:Hann, Sung Yun;Cui, Haitao;Zhang, Lijie Grace
- 通讯作者:Zhang, Lijie Grace
Recent advances in bioprinting technologies for engineering cardiac tissue.
用于工程心脏组织的生物打印技术的最新进展。
- DOI:10.1016/j.msec.2021.112057
- 发表时间:2021-05
- 期刊:
- 影响因子:7.9
- 作者:Agarwal, Tarun;Fortunato, Gabriele Maria;Hann, Sung Yun;Ayan, Bugra;Vajanthri, Kiran Yellappa;Presutti, Dario;Cui, Haitao;Chan, Alex H. P.;Costantini, Marco;Onesto, Valentina;Di Natale, Concetta;Huang, Ngan F.;Makvandi, Pooyan;Shabani, Majid;Maiti, Tapas Kumar;Zhang, Lijie Grace;De Maria, Carmelo
- 通讯作者:De Maria, Carmelo
4D physiologically adaptable cardiac patch: A 4-month in vivo study for the treatment of myocardial infarction
- DOI:10.1126/sciadv.abb5067
- 发表时间:2020-06-01
- 期刊:
- 影响因子:13.6
- 作者:Cui, Haitao;Liu, Chengyu;Zhang, Lijie Grace
- 通讯作者:Zhang, Lijie Grace
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lijie Grace Zhang其他文献
Testing of a 3D printed, nanostructured osteochondral implant for knee repair in a small animal model
在小动物模型中测试用于膝关节修复的 3D 打印纳米结构骨软骨植入物
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
N. Arumugasaamy;J. Fisher;N. Gandhi;B. Holmes;Kuo C;M. Oetgen;Cristina Rossi;Lijie Grace Zhang - 通讯作者:
Lijie Grace Zhang
Design a Biologically Inspired Nanostructured Coating for Better Osseointegration
设计受生物启发的纳米结构涂层以实现更好的骨整合
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Mian Wang;Jian Li;M. Keidar;Lijie Grace Zhang - 通讯作者:
Lijie Grace Zhang
Development of a Biomimetic Electrospun Microfibrous Scaffold With Multiwall Carbon Nanotubes for Cartilage Regeneration
开发用于软骨再生的仿生静电纺丝微纤维支架与多壁碳纳米管
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
B. Holmes;Nathan J. Castro;Jian Li;Lijie Grace Zhang - 通讯作者:
Lijie Grace Zhang
Enhanced Human Bone Marrow Mesenchymal Stem Cell Chondrogenic Differentiation on Cold Atmospheric Plasma Modified Cartilage Scaffold
冷大气等离子体修饰软骨支架增强人骨髓间充质干细胞软骨形成分化
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Wei Zhu;M. Keidar;Lijie Grace Zhang - 通讯作者:
Lijie Grace Zhang
Experimental and theoretical studies of tumor growth
肿瘤生长的实验和理论研究
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Hao Sun;Timothy Eswothy;Kerlin P. Robert;Jiaoyan Li;Lijie Grace Zhang;James D. Lee - 通讯作者:
James D. Lee
Lijie Grace Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lijie Grace Zhang', 18)}}的其他基金
I-Corps: 3D Bioprinted Cardiac Tissue Patch for Heart Repair
I-Corps:用于心脏修复的 3D 生物打印心脏组织补片
- 批准号:
2333048 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Understanding Multi-stage Neural Stem Cell Function via 4D Bioprinting Reprogrammable System
通过 4D 生物打印可重编程系统了解多阶段神经干细胞功能
- 批准号:
2110842 - 财政年份:2021
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
EAGER: 4D Bioprinting of Smart Complex Tissue Constructs
EAGER:智能复杂组织结构的 4D 生物打印
- 批准号:
1642186 - 财政年份:2016
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
UNS: Integrating 3D Bioprinting and Biologically Inspired Nanomaterials for Cartilage Regeneration
UNS:整合 3D 生物打印和生物启发纳米材料用于软骨再生
- 批准号:
1510561 - 财政年份:2015
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
A Novel 3D Bioprinted Smart Vascularized Nano Tissue
新型 3D 生物打印智能血管化纳米组织
- 批准号:
8755143 - 财政年份:2014
- 资助金额:
$ 27.5万 - 项目类别:
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
- 批准号:
2402729 - 财政年份:2024
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
- 批准号:
2402728 - 财政年份:2024
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
- 批准号:
2246916 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: 4D Visualization and Modeling of Two-Phase Flow and Deformation in Porous Media beyond the Realm of Creeping Flow
合作研究:蠕动流领域之外的多孔介质中两相流和变形的 4D 可视化和建模
- 批准号:
2326113 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Large: 4D100: Foundations and Methods for City-scale 4D RF Imaging at 100+ GHz
合作研究:CNS 核心:大型:4D100:100 GHz 城市规模 4D 射频成像的基础和方法
- 批准号:
2215646 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Large: 4D100: Foundations and Methods for City-scale 4D RF Imaging at 100+ GHz
合作研究:CNS 核心:大型:4D100:100 GHz 城市规模 4D 射频成像的基础和方法
- 批准号:
2215082 - 财政年份:2022
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
- 批准号:
2103434 - 财政年份:2021
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: Capturing 4D Variations in Stress, Slip, and Fault-Zone Material Properties: The 2019-2021 Gofar Transform Fault Earthquake Prediction Experiment
合作研究:捕捉应力、滑移和断层带材料特性的 4D 变化:2019-2021 年 Gofar 变换断层地震预测实验
- 批准号:
2128784 - 财政年份:2021
- 资助金额:
$ 27.5万 - 项目类别:
Continuing Grant
Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
- 批准号:
2103560 - 财政年份:2021
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Collaborative Research: 4D Visualization and Modeling of Two-Phase Flow and Deformation in Porous Media beyond the Realm of Creeping Flow
合作研究:蠕动流领域之外的多孔介质中两相流和变形的 4D 可视化和建模
- 批准号:
2000968 - 财政年份:2020
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant