CAREER: Real-time Convex Optimization for High-Performance Control of Autonomous Systems

职业:自治系统高性能控制的实时凸优化

基本信息

  • 批准号:
    1613235
  • 负责人:
  • 金额:
    $ 48.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-01-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

This Faculty Early Career Development (CAREER) Program grant will build innovative mathematical and computational methods of decision making for control of next generation high-performance autonomous systems. A broad range of emerging technologies utilize autonomy, including self-driving vehicles, quadrotors for delivery, search and rescue robots, mobile sensors for environmental monitoring, climate control systems for warehouses and buildings, automated drug dispensing, and next-generation power networks. Large-scale deployment of autonomous systems is a critical technological leap that will fundamentally transform our lives. Autonomous systems will maximize efficiency and reliability. Furthermore, they will improve safety by reducing or removing direct human involvement in hazardous tasks. However, autonomous systems present fundamentally difficult technical challenges to go beyond the limitations of the current state of the art in automation. This project lays the mathematical and computational foundations for a transformative approach to autonomy, one that makes previously impractical calculations tractable, and provides guaranteed levels of performance and stability. To meet fundamentally new and distinctly challenging performance and reliability requirements, future autonomous systems must make best possible decisions to control their actions without a human operator in the loop. They must utilize their full performance envelopes, while simultaneously satisfying critical mission and environmental constraints. Consequently, mathematical optimization problems are ubiquitous in autonomous control. Though optimization provides a powerful formulation framework, thus far real-time optimization based control has not transitioned to common practice due to shortcomings in the current algorithmic capabilities. To enable real-time optimization based control, this CAREER grant will develop a comprehensive theory of convexification -- formulation of control problems as tractable convex optimization problems -- enabling high performance control that is currently not achievable in many applications. Specifically, it will develop: accurate formulations of autonomous control problems as convex optimizations; customized numerical optimization algorithms that exploit problem structure for extremely fast and reliable onboard computations; and rigorous verification methods to certify the performance and robustness of the resulting autonomous control algorithms. These advances and resulting insights will also benefit systematic systems engineering and design for autonomous systems, high-level autonomous mission planning, and control of autonomous multi-agent systems. Collectively the theoretical and algorithmic products will form a strong technical foundation allowing the transition of real-time optimization-based control for autonomous systems into practice.
这种教师早期职业发展(职业)计划赠款将建立创新的数学和计算方法,以控制下一代高性能自治系统。广泛的新兴技术利用自治,包括自动驾驶汽车,用于交付和救援机器人的四肢,用于环境监测的移动传感器,用于仓库和建筑物的气候控制系统,自动化药物分配以及下一代电力网络。自治系统的大规模部署是一个关键的技术飞跃,它将从根本上改变我们的生活。自主系统将最大化效率和可靠性。此外,它们将通过减少或消除人类直接参与危险任务来提高安全性。但是,自主系统在根本上面临着根本困难的技术挑战,以超越自动化中最新现状的局限性。该项目为一种变革性的自治方法奠定了数学和计算基础,该方法可以使以前不切实际的计算可进行,并提供了保证的性能和稳定性水平。为了满足从根本上新的且挑战性的绩效和可靠性要求,未来的自主系统必须做出最佳决定,以控制其行动,而无需循环中的人类操作员。他们必须利用自己的全部性能信封,同时满足关键任务和环境限制。因此,数学优化问题在自主控制中无处不在。尽管优化提供了一个强大的公式框架,但由于当前算法功能的缺点,迄今为止,基于实时优化的控制并未过渡到共同实践。为了启用基于实时优化的控制,这项职业赠款将开发出一个综合的凸化理论 - 将控制问题作为可拖动的凸优化问题制定 - 实现了当前在许多应用中无法实现的高性能控制。具体而言,它将发展:自主控制问题的准确表述作为凸优化;自定义的数值优化算法将问题结构用于极快和可靠的机载计算;以及严格的验证方法,以证明由此产生的自主控制算法的性能和鲁棒性。这些进步和产生的见解还将受益于自主系统,高级自主任务计划以及对自动多代理系统的控制的系统系统工程和设计。总体而言,理论和算法产品将构成强大的技术基础,从而使基于实时优化的自主系统的控制过渡到实践中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Behcet Acikmese其他文献

Behcet Acikmese的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Behcet Acikmese', 18)}}的其他基金

Collaborative Research: Negotiated Planning for Stochastic Control of Dynamical Systems
协作研究:动力系统随机控制的协商规划
  • 批准号:
    2105502
  • 财政年份:
    2021
  • 资助金额:
    $ 48.72万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Optimization-Based Planning and Control for Assured Autonomy: Generalizing Insights From Autonomous Space Missions
CPS:中:协作研究:基于优化的规划和控制以确保自主:概括自主空间任务的见解
  • 批准号:
    1931744
  • 财政年份:
    2019
  • 资助金额:
    $ 48.72万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Autonomy Protocols: From Human Behavioral Modeling to Correct-By-Construction, Scalable Control
CPS:协同:协作研究:自主协议:从人类行为建模到构建纠正、可扩展控制
  • 批准号:
    1624328
  • 财政年份:
    2016
  • 资助金额:
    $ 48.72万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Semantics of Optimization for Real Time Intelligent Embedded Systems (SORTIES)
CPS:协同:协作研究:实时智能嵌入式系统(SORTIES)优化的语义
  • 批准号:
    1619729
  • 财政年份:
    2016
  • 资助金额:
    $ 48.72万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Semantics of Optimization for Real Time Intelligent Embedded Systems (SORTIES)
CPS:协同:协作研究:实时智能嵌入式系统(SORTIES)优化的语义
  • 批准号:
    1446520
  • 财政年份:
    2015
  • 资助金额:
    $ 48.72万
  • 项目类别:
    Standard Grant
CAREER: Real-time Convex Optimization for High-Performance Control of Autonomous Systems
职业:自治系统高性能控制的实时凸优化
  • 批准号:
    1454543
  • 财政年份:
    2015
  • 资助金额:
    $ 48.72万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Autonomy Protocols: From Human Behavioral Modeling to Correct-By-Construction, Scalable Control
CPS:协同:协作研究:自主协议:从人类行为建模到构建纠正、可扩展控制
  • 批准号:
    1446578
  • 财政年份:
    2014
  • 资助金额:
    $ 48.72万
  • 项目类别:
    Standard Grant

相似国自然基金

己酸二元发酵体系中甲烷菌促进己酸生成的机制研究
  • 批准号:
    31501461
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
多维马氏体的数学建模及其高精度数值模拟方法
  • 批准号:
    11171218
  • 批准年份:
    2011
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目
体数据表达与绘制的新方法研究
  • 批准号:
    61170206
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
mRNA推断皮肤损伤时间的多因子与多因素实验研究
  • 批准号:
    81172902
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于孢子捕捉器和实时定量PCR技术的空气中小麦白粉菌的监测技术研究
  • 批准号:
    31171793
  • 批准年份:
    2011
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    $ 48.72万
  • 项目类别:
    Continuing Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
  • 批准号:
    2338792
  • 财政年份:
    2024
  • 资助金额:
    $ 48.72万
  • 项目类别:
    Continuing Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    $ 48.72万
  • 项目类别:
    Continuing Grant
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
  • 批准号:
    2340519
  • 财政年份:
    2024
  • 资助金额:
    $ 48.72万
  • 项目类别:
    Continuing Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
  • 批准号:
    2340799
  • 财政年份:
    2024
  • 资助金额:
    $ 48.72万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了