Can improving predictions of soil oxygen dynamics increase understanding of greenhouse gas hotspots and hot moments?

改进土壤氧动态的预测能否增加对温室气体热点和热点时刻的了解?

基本信息

项目摘要

The amount of oxygen in a soil affects many ecosystem processes, including the release of greenhouse gases such as nitrous oxide, methane and carbon dioxide. However, soil oxygen concentrations are rarely directly measured in research projects because they are difficult and expensive to measure accurately. Better understanding of the controls over soil oxygen could help guide land restoration projects that result in a greater removal of greenhouse gases from the atmosphere. The new technologies and approaches proposed in this project could lower the cost and enable easier measurements of soil oxygen, which could help reduce the financial burden of reducing greenhouse gas emissions in the future. This project will add to the national scientific capacity through support of four early career scientists and the interdisciplinary training of a postdoctoral student. The scientists will also enhance undergraduate research experiences. An important broader impact will be a partnership among land managers and the scientists involved to develop a continuing education program aimed at providing opportunities for citizens to engage in climate-friendly projects for the restoration of local ecosystems.Soil oxygen concentrations are usually estimated using computer models based on soil properties that are easier to measure, particularly soil water contents. But measurements made in prior research indicate that directly measured soil oxygen levels differ considerably from modeled soil oxygen levels. In fact, current computer models cannot predict the rapid changes in soil oxygen that are observed in wetlands, where the production of greenhouse gases is particularly high compared to other types of ecosystems. Mismatches between models and measurements may occur because in actual ecosystems the emission of greenhouse gases may not be constant across space and time, but likely occur under specific environmental circumstances that are particularly difficult to identify and keep track of (called hot spots or hot moments). This project will measure emissions in relation to hot spots and moments along transects running from abandoned agricultural lands into adjacent creeks at an established research site near Dayton, Ohio. Success requires high-resolution measurements of soil oxygen concentrations in space and time. This is a major challenge, but if successful, the project will critically contribute to the assessment of greenhouse gas fluxes from local ecosystems, as well as their incorporation into large-scale climate models.
土壤中的氧气含量影响许多生态系统过程,包括一氧化二氮、甲烷和二氧化碳等温室气体的释放。然而,在研究项目中很少直接测量土壤氧浓度,因为精确测量它们既困难又昂贵。更好地了解对土壤氧的控制可以帮助指导土地恢复项目,从而从大气中更多地去除温室气体。在这个项目中提出的新技术和方法可以降低成本,使土壤氧的测量更容易,这可以帮助减轻未来减少温室气体排放的经济负担。该项目将通过支持四名早期职业科学家和一名博士后的跨学科培训来增加国家科学能力。这些科学家还将加强本科生的研究经验。一个重要的更广泛的影响将是在土地管理者和参与其中的科学家之间建立伙伴关系,制定一个继续教育计划,旨在为公民提供参与气候友好型项目的机会,以恢复当地的生态系统。土壤氧浓度通常是用计算机模型来估计的,这种模型是基于更容易测量的土壤特性,特别是土壤含水量。但是在先前的研究中进行的测量表明,直接测量的土壤氧水平与模拟的土壤氧水平有很大的不同。事实上,目前的计算机模型无法预测在湿地观测到的土壤氧的快速变化,与其他类型的生态系统相比,湿地产生的温室气体特别高。模型和测量值之间可能会出现不匹配,因为在实际的生态系统中,温室气体的排放在空间和时间上可能不是恒定的,而可能发生在特别难以识别和跟踪的特定环境情况下(称为热点或热点时刻)。该项目将在俄亥俄州代顿附近的一个已建立的研究地点测量热点和热点时刻的排放,这些热点和时刻从废弃的农业用地流向邻近的小溪。成功需要在空间和时间上对土壤氧浓度进行高分辨率测量。这是一项重大挑战,但如果成功,该项目将对评估当地生态系统的温室气体通量以及将其纳入大规模气候模型作出重大贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Terrance Loecke其他文献

Terrance Loecke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Terrance Loecke', 18)}}的其他基金

Can improving predictions of soil oxygen dynamics increase understanding of greenhouse gas hotspots and hot moments?
改进土壤氧动态的预测能否增加对温室气体热点和热点时刻的了解?
  • 批准号:
    1457505
  • 财政年份:
    2015
  • 资助金额:
    $ 69.93万
  • 项目类别:
    Continuing Grant

相似海外基金

Assessing the effectiveness of affordable soil spectroscopic techniques for microbial diversity and abundance predictions on English wheat farms
评估经济适用的土壤光谱技术对英国小麦农场微生物多样性和丰度预测的有效性
  • 批准号:
    10055289
  • 财政年份:
    2023
  • 资助金额:
    $ 69.93万
  • 项目类别:
    Collaborative R&D
Development of a multiscale sediment connectivity model to improve global sediment yield predictions and study the effects of land use and climate change on soil erosion
开发多尺度沉积物连通性模型,以改善全球沉积物产量预测并研究土地利用和气候变化对土壤侵蚀的影响
  • 批准号:
    559400-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 69.93万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Development of a multiscale sediment connectivity model to improve global sediment yield predictions and study the effects of land use and climate change on soil erosion
开发多尺度沉积物连通性模型,以改善全球沉积物产量预测并研究土地利用和气候变化对土壤侵蚀的影响
  • 批准号:
    559400-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 69.93万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Optimization of Sampling Design For Predictive Digital Soil Mapping: Reducing Uncertainty, Improving Predictions and Gaining Efficiencies in Sampling Programs
预测数字土壤测绘的采样设计优化:减少不确定性、改进预测并提高采样计划的效率
  • 批准号:
    535671-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 69.93万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Impact of Airborne Heavy Metals on Lung Disease and the Environment
空气中重金属对肺部疾病和环境的影响
  • 批准号:
    10337080
  • 财政年份:
    2020
  • 资助金额:
    $ 69.93万
  • 项目类别:
Optimization of Sampling Design For Predictive Digital Soil Mapping: Reducing Uncertainty, Improving Predictions and Gaining Efficiencies in Sampling Programs
预测数字土壤测绘的采样设计优化:减少不确定性、改进预测并提高采样计划的效率
  • 批准号:
    535671-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 69.93万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Optimization of Sampling Design For Predictive Digital Soil Mapping: Reducing Uncertainty, Improving Predictions and Gaining Efficiencies in Sampling Programs
预测数字土壤测绘的采样设计优化:减少不确定性、改进预测并提高采样计划的效率
  • 批准号:
    535671-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 69.93万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Internal soil erosion: from grain-scale insights to large-scale predictions
内部土壤侵蚀:从颗粒尺度的洞察到大规模的预测
  • 批准号:
    DP190102779
  • 财政年份:
    2019
  • 资助金额:
    $ 69.93万
  • 项目类别:
    Discovery Projects
Understanding the Role of Remotely-Sensed Soil Moisture Observations in Crop Yield Predictions Across the Canadian Prairies
了解遥感土壤湿度观测在加拿大大草原作物产量预测中的作用
  • 批准号:
    515633-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 69.93万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Can improving predictions of soil oxygen dynamics increase understanding of greenhouse gas hotspots and hot moments?
改进土壤氧动态的预测能否增加对温室气体热点和热点时刻的了解?
  • 批准号:
    1457505
  • 财政年份:
    2015
  • 资助金额:
    $ 69.93万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了