EAPSI: Preventing Traffic Accidents based on Driving Behavior with Engineering and Statistical Models
EAPSI:基于驾驶行为的工程和统计模型预防交通事故
基本信息
- 批准号:1613983
- 负责人:
- 金额:$ 0.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Fellowship Award
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Predicting driving behavior is an important component for developing safer and more reliable driver assistance systems. Modern technologies such as the Google Self-Driving Car and the Mobileye system are good examples on using sensors or cameras to detect road conditions and send out instructions to the cars and drivers when potential dangers are about to occur. However, these technologies can be less reliable when driving in extreme weather conditions, such as heavy rain or darkness at night. Thus many researchers in the engineering field have attempted to analyze driver behavior to predict what will happen next. This project proposes the use of driver behavior data to predict the possibility of an upcoming traffic accident. The project is in collaboration with Professor Kazushi Ikeda from Nara Institute of Science and Technology in Japan. Professor Ikeda and his laboratory are experts in analyzing traffic data.Hidden Markov Models (HMM) is a popular technique used in the engineering field to analyze traffic data. One can view HMM as an unsupervised clustering technique, where one tries to cluster the different driving states into groups exhibiting similar data pattern. Much work has been proposed on estimating and predicting the different driving states using HMM, however, little work has extended this idea to predicting the occurrence of accidents. This project attempts to close this gap by combining existing methods with an additional change point detection procedure from time series analysis to predict the occurrence of an accident if the driver behaves abnormally. In brief, HMM will first be used to learn the different driving states. Once the states are estimated, a global trend within each state can be obtained and removed, then change point analysis will be applied to analyze the residual of the data, where the goal is to detect sudden changes in drivers? behavior which might signify an accident is about to occur. This can be viewed as a preprocessing step using unsupervised learning (HMM) followed by a statistical modeling approach (change point detection) to build the prediction model.This award under the East Asia and Pacific Summer Institutes program supports summer research by a U.S. graduate student and is jointly funded by NSF and the Japan Society for the Promotion of Science.
预测驾驶行为是开发更安全、更可靠的驾驶辅助系统的重要组成部分。谷歌自动驾驶汽车和Mobileye系统等现代技术是使用传感器或摄像头检测道路状况并在潜在危险即将发生时向汽车和驾驶员发出指示的好例子。然而,这些技术在极端天气条件下(如大雨或夜间黑暗)行驶时可能不太可靠。因此,工程领域的许多研究人员都试图通过分析驾驶员的行为来预测接下来会发生什么。这个项目提出使用驾驶员行为数据来预测即将发生的交通事故的可能性。该项目是与日本奈良科学技术研究所的Kazushi Ikeda教授合作的。池田教授和他的实验室是分析交通数据的专家。隐马尔可夫模型(HMM)是工程领域中常用的交通数据分析技术。我们可以将HMM视为一种无监督聚类技术,它试图将不同的驾驶状态聚类成显示相似数据模式的组。利用HMM对不同的驾驶状态进行估计和预测的研究已经有很多,但是将这一思想扩展到预测事故发生的研究却很少。该项目试图通过将现有方法与时间序列分析的附加变化点检测程序相结合来缩小这一差距,从而在驾驶员行为异常时预测事故的发生。简而言之,HMM将首先用于学习不同的驾驶状态。一旦状态被估计出来,就可以得到每个状态内的一个全局趋势并去除,然后应用变化点分析来分析数据的残差,其目的是检测驱动因素的突然变化。可能预示事故即将发生的行为。这可以看作是使用无监督学习(HMM)的预处理步骤,然后使用统计建模方法(变化点检测)来构建预测模型。该奖项隶属于东亚和太平洋暑期研究所项目,由美国国家科学基金会和日本科学促进会共同资助,支持一名美国研究生进行暑期研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rex Cheung其他文献
1462: Prostate Cancer Androgen Independence During Salvage Hormone Therapy After Radiation Failure
- DOI:
10.1016/s0022-5347(18)38687-7 - 发表时间:
2004-04-01 - 期刊:
- 影响因子:
- 作者:
Andrew K. Lee;Lawrence B. Levy;Rex Cheung;Mattew T. Ballo - 通讯作者:
Mattew T. Ballo
Rex Cheung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rex Cheung', 18)}}的其他基金
Graduate Research Fellowship Program
研究生研究奖学金计划
- 批准号:
1060037 - 财政年份:2010
- 资助金额:
$ 0.54万 - 项目类别:
Fellowship Award
相似海外基金
Preventing Plastic Pollution with Engineering Biology (P3EB) Mission Hub
利用工程生物学 (P3EB) 任务中心预防塑料污染
- 批准号:
BB/Y007972/1 - 财政年份:2024
- 资助金额:
$ 0.54万 - 项目类别:
Research Grant
Validating the efficacy of SITREX in preventing heterotopic ossification
验证 SITREX 在预防异位骨化方面的功效
- 批准号:
MR/Z503782/1 - 财政年份:2024
- 资助金额:
$ 0.54万 - 项目类别:
Research Grant
Preventing violence against women in high-prevalence settings: The EVE Project
在高发地区预防暴力侵害妇女行为:EVE 项目
- 批准号:
MR/Y003810/1 - 财政年份:2024
- 资助金额:
$ 0.54万 - 项目类别:
Fellowship
Impact of physical exercise on brain-bone marrow interactions in postmenopausal rats: potential mechanisms preventing menopause-induced hypertension
体育锻炼对绝经后大鼠脑-骨髓相互作用的影响:预防绝经期高血压的潜在机制
- 批准号:
24K20609 - 财政年份:2024
- 资助金额:
$ 0.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERI: A Machine Learning Framework for Preventing Cracking in Semiconductor Materials
ERI:防止半导体材料破裂的机器学习框架
- 批准号:
2347035 - 财政年份:2024
- 资助金额:
$ 0.54万 - 项目类别:
Standard Grant
Preventing Exfiltration of Sensitive Data by Malicious Insiders or Malwares
防止恶意内部人员或恶意软件泄露敏感数据
- 批准号:
DP240101032 - 财政年份:2024
- 资助金额:
$ 0.54万 - 项目类别:
Discovery Projects
Preventing drops in egg production in UK free-range flocks: understanding the interactions between farm practices, flock coinfections and immunity
防止英国散养鸡群产蛋量下降:了解农场实践、鸡群共感染和免疫之间的相互作用
- 批准号:
BB/X017591/1 - 财政年份:2024
- 资助金额:
$ 0.54万 - 项目类别:
Research Grant
PFI-RP: Preventing Intimate Partner Violence Using Digital Technology: A Transdisciplinary Approach
PFI-RP:利用数字技术预防亲密伴侣暴力:跨学科方法
- 批准号:
2329797 - 财政年份:2024
- 资助金额:
$ 0.54万 - 项目类别:
Continuing Grant
Preventing obesity through Biologically and bEhaviorally Tailored inTERventions for you | BETTER4U
通过为您量身定制的生物学和行为干预措施来预防肥胖 |
- 批准号:
10093560 - 财政年份:2023
- 资助金额:
$ 0.54万 - 项目类别:
EU-Funded
Developing and testing a novel self-guided digital therapeutic solution for preventing stammering in children: incorporating latest research on early detection and progress evaluation using real-world data
开发和测试一种新颖的自我引导数字治疗解决方案,用于预防儿童口吃:结合使用真实世界数据进行早期检测和进展评估的最新研究
- 批准号:
10072187 - 财政年份:2023
- 资助金额:
$ 0.54万 - 项目类别:
Collaborative R&D