On the Occurrence of Resonance in Elastic-Dissipative Coupled Systems
关于弹性耗散耦合系统中共振的发生
基本信息
- 批准号:1614011
- 负责人:
- 金额:$ 12.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
GaldiDMS-1614011 Over the past two decades, the study of the motion of a viscous liquid in the presence of rigid or deformable bodies has become one of the main focuses of applied research. The aim of this project is to address significant aspects of the above type of phenomenon and is directed toward the accomplishment of the following objectives. The first one regards occurrence of resonance phenomena in the interaction of a viscous liquid with an elastic structure. For example, in the context of modeling of arterial blood flow it is of the utmost importance to find out whether, for a given model, the pulsatile action of the heart pumping blood would produce an unrealistic high-amplitude oscillation of the arterial wall. The second one deals with the so-called vortex-induced oscillations of a structure in the uniform stream of a viscous liquid. This phenomenon is considered to play a major role in the collapse of chimneys and bridges under wind load. The most famous event in this sense is probably the failure of the Tacoma Narrows bridge. From a technical viewpoint, the above questions are addressed by studying the existence of time-periodic solutions and the occurrence of Hopf bifurcation in coupled systems of nonlinear hyperbolic-parabolic equations that model fluid-structure interactions. One of the main focuses of this project is to understand whether the dissipative mechanism (the parabolic component of the system) can prevent the occurrence of resonance in the elastic structure (the hyperbolic component). Some of these problems need to be formulated in unbounded spatial domains, like infinite pipeline systems or regions exterior to a finite number of bodies. The latter may add an even further complication, in that the linearized relevant operators may possess, in such cases, a non-empty essential spectrum.
GaldiDMS-1614011 在过去的二十年里,粘性液体在刚体或变形体存在下的运动研究已经成为应用研究的主要焦点之一。 该项目的目的是解决上述类型现象的重要方面,旨在实现以下目标。 第一个是关于粘性液体与弹性结构相互作用中共振现象的发生。 例如,在动脉血流建模的背景下,对于给定的模型,找出心脏泵送血液的脉动动作是否会产生动脉壁的不切实际的高振幅振荡是极其重要的。 第二种是研究粘性流体均匀流场中结构的涡激振动。 这种现象被认为是在风荷载作用下烟囱和桥梁倒塌的主要原因。 从这个意义上说,最著名的事件可能是塔科马海峡大桥的失败。 从技术的角度来看,上述问题的解决,通过研究的时间周期解的存在性和Hopf分支的发生在耦合系统的非线性双曲-抛物方程模型的流体-结构的相互作用。 该项目的主要焦点之一是了解耗散机制(系统的抛物线分量)是否可以防止弹性结构(双曲线分量)中共振的发生。 其中一些问题需要在无界空间域中制定,例如无限管道系统或有限数量物体外部的区域。 后者可能会增加一个更复杂的,因为线性化的相关运营商可能拥有,在这种情况下,一个非空的本质谱。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Giovanni Galdi其他文献
Giovanni Galdi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Giovanni Galdi', 18)}}的其他基金
Two Problems in Liquid-Solid Interaction
液固相互作用的两个问题
- 批准号:
2307811 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别:
Standard Grant
Analytical and Numerical Study of Two Problems Arising in solid-Liquid Interaction
固液相互作用中两个问题的解析和数值研究
- 批准号:
1311983 - 财政年份:2013
- 资助金额:
$ 12.1万 - 项目类别:
Standard Grant
Mathematical Analysis of Some Fundamental Problems in Solid-Liquid Interaction
固液相互作用若干基本问题的数学分析
- 批准号:
1009456 - 财政年份:2010
- 资助金额:
$ 12.1万 - 项目类别:
Continuing Grant
Mathematical Problems in Liquid-Particle Interaction
液体-粒子相互作用的数学问题
- 批准号:
0707281 - 财政年份:2007
- 资助金额:
$ 12.1万 - 项目类别:
Standard Grant
Mathematical Analysis of Some Problems of Particle-Liquid Motion
质液运动若干问题的数学分析
- 批准号:
0404834 - 财政年份:2004
- 资助金额:
$ 12.1万 - 项目类别:
Standard Grant
Mathematical Analysis of the Orientation of Symmetric Particles Sedimenting in Newtonian and Viscoelastic Liquids
牛顿和粘弹性液体中对称粒子沉降方向的数学分析
- 批准号:
0103970 - 财政年份:2001
- 资助金额:
$ 12.1万 - 项目类别:
Standard Grant
相似海外基金
A national network for magnetic resonance spectroscopy
国家磁共振波谱网络
- 批准号:
LE240100050 - 财政年份:2024
- 资助金额:
$ 12.1万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 12.1万 - 项目类别:
Standard Grant
Deciphering the Competing Mechanisms of Li Microstructure Formation in Solid Electrolytes with Nuclear Magnetic Resonance Spectroscopy (NMR) and Imaging (MRI)
利用核磁共振波谱 (NMR) 和成像 (MRI) 解读固体电解质中锂微结构形成的竞争机制
- 批准号:
2319151 - 财政年份:2024
- 资助金额:
$ 12.1万 - 项目类别:
Continuing Grant
TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
- 批准号:
EP/X039277/1 - 财政年份:2024
- 资助金额:
$ 12.1万 - 项目类别:
Research Grant
CAREER: Safe Continuum Robot Inside Magnetic Resonance Imaging (MRI)
职业:磁共振成像 (MRI) 内的安全连续体机器人
- 批准号:
2339202 - 财政年份:2024
- 资助金额:
$ 12.1万 - 项目类别:
Standard Grant
Protein Structure and Dynamics by Electron/Nuclear Paramagnetic Resonance
通过电子/核顺磁共振研究蛋白质结构和动力学
- 批准号:
DP240100273 - 财政年份:2024
- 资助金额:
$ 12.1万 - 项目类别:
Discovery Projects
Magnetic resonance imaging studies of catalytic monoliths
催化整体的磁共振成像研究
- 批准号:
2905857 - 财政年份:2024
- 资助金额:
$ 12.1万 - 项目类别:
Studentship
V-LF-Spiro3D: Low-field 3D magnetic resonance spirometry for advanced regional exploration of respiratory diseases
V-LF-Spiro3D:低场 3D 磁共振肺量计,用于呼吸系统疾病的高级区域探索
- 批准号:
10063498 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别:
EU-Funded
129Xe Magenetic Resonance Imagind-based Phenotypes of Long COVID: A multi-center Evaluation
基于 129Xe 磁共振成像的 Long COVID 表型:多中心评估
- 批准号:
480730 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别:
Magnetic Resonance Imaging (MRI) and Artificial Intelligence (AI) can improve preoperative malignancy risk prediction of ovarian masses.
磁共振成像(MRI)和人工智能(AI)可以改善卵巢肿块的术前恶性肿瘤风险预测。
- 批准号:
486885 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别:
Operating Grants