Two Problems in Liquid-Solid Interaction

液固相互作用的两个问题

基本信息

  • 批准号:
    2307811
  • 负责人:
  • 金额:
    $ 29.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Over the past decades, the study of the motion of a viscous liquid interacting with solid bodies has become one of the main focuses of applied research. The objective of this project is to address two fundamental aspects in this area. The first regards the vibration-induced motion of a rigid body in a viscous liquid, when the vibration is produced by a time-periodically displaced mass inside the body. The wide area of applications of this phenomenon includes biomedical engineering and design of micro- and nano-technological equipment. The second aspect concerns the effect of flow-induced oscillations on a spring-mounted structure. These type of questions are of the utmost relevance in the study of the equilibrium and stability of suspension bridges and, in some cases, of their collapse, like in the notorious Tacoma Narrows Bridge disaster. This award will also provide opportunities for the involvement of graduate students in the project's research.Both projects fall into the realm of non-linear analysis and their study requires the use of fresh mathematical ideas that, possibly, will be employed also in other areas of applied nonlinear PDE's. First and foremost is the investigation of (local and global) Hopf bifurcation in a liquid-solid interaction problem in presence of a continuum spectrum of the relevant linearized operator. To date, this question represents an entirely uncharted territory. Another and not less important mathematical feature of the proposed research consists in the detailed study of the range of nonlinear elliptic operators (related to Navier-Stokes-like boundary-value problems) that are Fredholm of negative index. Interestingly enough, this kind of analysis may lead to the rigorous quantitative understanding of how and why a vibrating sphere can move in a viscous liquid.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几十年里,粘性液体与固体相互作用的运动研究已经成为应用研究的主要焦点之一。该项目的目标是解决这一领域的两个基本问题。 第一个是关于在粘性液体中的刚体的振动诱导运动,当振动是由体内的时间周期性位移的质量产生时。这一现象的广泛应用领域包括生物医学工程和微纳米技术设备的设计。第二个方面涉及流致振荡对弹簧安装结构的影响。这些类型的问题是最相关的研究平衡和稳定性的悬索桥,并在某些情况下,他们的崩溃,如在臭名昭著的塔科马窄桥灾难。这两个项目都属于非线性分析领域,他们的研究需要使用新的数学思想,这些思想可能也会被应用于非线性偏微分方程的其他领域。首先,研究了在相关线性化算子的连续谱存在下,液-固相互作用问题的(局部和全局)Hopf分岔。迄今为止,这个问题是一个完全未知的领域。 另一个不太重要的数学功能,拟议的研究包括在详细研究的范围内的非线性椭圆算子(相关的Navier-Stokes边值问题),是Fredholm的负指数。有趣的是,这种分析可能会导致对振动球体如何以及为什么能够在粘性液体中移动的严格定量理解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Giovanni Galdi其他文献

Giovanni Galdi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Giovanni Galdi', 18)}}的其他基金

On the Occurrence of Resonance in Elastic-Dissipative Coupled Systems
关于弹性耗散耦合系统中共振的发生
  • 批准号:
    1614011
  • 财政年份:
    2016
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Analytical and Numerical Study of Two Problems Arising in solid-Liquid Interaction
固液相互作用中两个问题的解析和数值研究
  • 批准号:
    1311983
  • 财政年份:
    2013
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Mathematical Analysis of Some Fundamental Problems in Solid-Liquid Interaction
固液相互作用若干基本问题的数学分析
  • 批准号:
    1009456
  • 财政年份:
    2010
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Continuing Grant
Mathematical Problems in Liquid-Particle Interaction
液体-粒子相互作用的数学问题
  • 批准号:
    0707281
  • 财政年份:
    2007
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Mathematical Analysis of Some Problems of Particle-Liquid Motion
质液运动若干问题的数学分析
  • 批准号:
    0404834
  • 财政年份:
    2004
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Mathematical Analysis of the Orientation of Symmetric Particles Sedimenting in Newtonian and Viscoelastic Liquids
牛顿和粘弹性液体中对称粒子沉降方向的数学分析
  • 批准号:
    0103970
  • 财政年份:
    2001
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant

相似海外基金

A Parallel, High-Fidelity Coupled Machine Learning/ CFD Solver Method for Solving Exascale CFD Problems with Turbulence Damping at the Liquid-Gas Inte
一种并行、高保真耦合机器学习/CFD 求解器方法,用于解决液气界面湍流阻尼的百亿亿次 CFD 问题
  • 批准号:
    2883937
  • 财政年份:
    2023
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Studentship
Mathematical Problems Modeling Nematic Liquid Crystals: from Macroscopic to Microscopic Theories
向列液晶建模的数学问题:从宏观到微观理论
  • 批准号:
    2307525
  • 财政年份:
    2023
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
One dimensional problems in Liquid Crystals
液晶中的一维问题
  • 批准号:
    574066-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 29.98万
  • 项目类别:
    University Undergraduate Student Research Awards
Mathematical Analysis of Nematic Liquid Crystals and L-infinity Variational Problems
向列液晶与L-无穷变分问题的数学分析
  • 批准号:
    1764417
  • 财政年份:
    2018
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Continuing Grant
Theoretical study on spin-liquid states in frustrated magnets and related problems
受挫磁体中自旋液体状态的理论研究及相关问题
  • 批准号:
    17K05519
  • 财政年份:
    2017
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hydrodynamics of Liquid Crystals and Extremum Problems for Eigenvalues
液晶流体动力学和特征值极值问题
  • 批准号:
    1501000
  • 财政年份:
    2015
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Continuing Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
  • 批准号:
    1522869
  • 财政年份:
    2014
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Continuing Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
  • 批准号:
    1265574
  • 财政年份:
    2013
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Continuing Grant
Analytical and Numerical Study of Two Problems Arising in solid-Liquid Interaction
固液相互作用中两个问题的解析和数值研究
  • 批准号:
    1311983
  • 财政年份:
    2013
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
Traveling and standing waves in liquid-vapor phase transitions and related problems
液-汽相变中的行波和驻波及相关问题
  • 批准号:
    1211070
  • 财政年份:
    2012
  • 资助金额:
    $ 29.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了